Using Recurrence quantification analysis and Generalized Hurst Exponents of ECG for human authentication

Fatemeh Parastesh Karegar, A. Fallah, S. Rashidi
{"title":"Using Recurrence quantification analysis and Generalized Hurst Exponents of ECG for human authentication","authors":"Fatemeh Parastesh Karegar, A. Fallah, S. Rashidi","doi":"10.1109/CSIEC.2017.7940172","DOIUrl":null,"url":null,"abstract":"Previous works show that the electrocardiogram is a promising signal to be used as a biometric trait. The nonlinear methods for computing the dynamical properties of ECG signal, have been previously used. Since each of the large scale features of recurrence plots of ECG is related quite simply to time-domain features, they can provide good result in biometric system. In this paper we apply Rescaled Range Analysis (RSA), Higuchi's Fractal Dimension (HFD), Detrended Fluctuation Analysis (DFA), Generalized Hurst Exponent (GHE) and Recurrence quantification analysis (RQA) to extract features for authentication system. Support Vector Machine is used to classify the nonlinear features. The proposed approach has been tested using 18 different subjects ECG signal of MIT-BIH Normal Sinus Rhythm Database. The obtained results show that the authentication accuracy is 96.07±0.86%.","PeriodicalId":166046,"journal":{"name":"2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIEC.2017.7940172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Previous works show that the electrocardiogram is a promising signal to be used as a biometric trait. The nonlinear methods for computing the dynamical properties of ECG signal, have been previously used. Since each of the large scale features of recurrence plots of ECG is related quite simply to time-domain features, they can provide good result in biometric system. In this paper we apply Rescaled Range Analysis (RSA), Higuchi's Fractal Dimension (HFD), Detrended Fluctuation Analysis (DFA), Generalized Hurst Exponent (GHE) and Recurrence quantification analysis (RQA) to extract features for authentication system. Support Vector Machine is used to classify the nonlinear features. The proposed approach has been tested using 18 different subjects ECG signal of MIT-BIH Normal Sinus Rhythm Database. The obtained results show that the authentication accuracy is 96.07±0.86%.
将递归量化分析和广义赫斯特指数应用于心电识别
以往的研究表明,心电图是一种很有前途的生物特征信号。计算心电信号动态特性的非线性方法已经被广泛使用。由于心电图递归图的每一个大尺度特征与时域特征的关系都很简单,因此在生物识别系统中可以提供很好的结果。本文应用重标度极差分析(RSA)、Higuchi分形维数分析(HFD)、去趋势波动分析(DFA)、广义赫斯特指数(GHE)和递归量化分析(RQA)对认证系统进行特征提取。使用支持向量机对非线性特征进行分类。该方法已在MIT-BIH正常窦性心律数据库的18个不同受试者的心电图信号中进行了测试。结果表明,该方法的鉴别准确率为96.07±0.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信