Motifs discovery for streaming time series

Qi Zhang, Yang Gao, Jiecai Zheng, Lin Chen, Xueqing Li
{"title":"Motifs discovery for streaming time series","authors":"Qi Zhang, Yang Gao, Jiecai Zheng, Lin Chen, Xueqing Li","doi":"10.29268/ICIOT.2016.0017","DOIUrl":null,"url":null,"abstract":"The motif discovery approach is used to measure the correlation of the pair of consecutiveness in time series, which also aims to find all subsequences which are similar to the given one. However, alongwith the arrival of Industry 4.0 era, massive numbers of detectinginstruments in various fields are continuously producinga plenty number of time series streamingdata, the high dimensionality and continuousness of streamingtime series give rise to the potential threat for searchingeffectiveness. For thesereasons, wecomeupwithanovel motifs discovery approachfor streaming timeseries basedonpiecewiselinear representationwithturningpoints andskylineindex. As theexperimental results suggest, our approach is moreeffectivethan someother traditional methods.","PeriodicalId":424129,"journal":{"name":"Services Proceedings of the 2016 S2","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Services Proceedings of the 2016 S2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29268/ICIOT.2016.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The motif discovery approach is used to measure the correlation of the pair of consecutiveness in time series, which also aims to find all subsequences which are similar to the given one. However, alongwith the arrival of Industry 4.0 era, massive numbers of detectinginstruments in various fields are continuously producinga plenty number of time series streamingdata, the high dimensionality and continuousness of streamingtime series give rise to the potential threat for searchingeffectiveness. For thesereasons, wecomeupwithanovel motifs discovery approachfor streaming timeseries basedonpiecewiselinear representationwithturningpoints andskylineindex. As theexperimental results suggest, our approach is moreeffectivethan someother traditional methods.
流时间序列的主题发现
基序发现方法用于度量时间序列中连续对的相关性,目的是找出与给定序列相似的所有子序列。然而,随着工业4.0时代的到来,各个领域的大量检测仪器不断产生大量的时间序列流数据,流时间序列的高维数和连续性给搜索的有效性带来了潜在的威胁。基于这些原因,我们提出了一种新的基于分段线性表示的流时间序列的主题发现方法,该方法带有转折点和skylineindex。实验结果表明,我们的方法比其他传统方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信