Ali Rekabdar, O. Khayat, Noushin Khatib, Mina Aminghafari
{"title":"Using bivariate Gaussian distribution for image denoising in the 2-D complex wavelet domain","authors":"Ali Rekabdar, O. Khayat, Noushin Khatib, Mina Aminghafari","doi":"10.1109/IRANIANMVIP.2010.5941157","DOIUrl":null,"url":null,"abstract":"Within this framework we describe a novel technique for removing noise from digital noisy images, based on the modeling of wavelet coefficient with bivariate normal distribution and statistical calculation. A method for image denoising is presented in this paper to maximize a posterior density function (MAP) estimator using a bivariate normal random variable. We use our denoising algorithm in 2-D complex wavelet domain comparing with soft and hard thresholding method of stationary wavelet analysis tool (2-D SWT). Despite the simplicity of our method in its implementation, our denoising results achieves better performance than the other mentioned methods both visually and in terms of peak signal-to-noise ratio (PSNR).","PeriodicalId":350778,"journal":{"name":"2010 6th Iranian Conference on Machine Vision and Image Processing","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 6th Iranian Conference on Machine Vision and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2010.5941157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Within this framework we describe a novel technique for removing noise from digital noisy images, based on the modeling of wavelet coefficient with bivariate normal distribution and statistical calculation. A method for image denoising is presented in this paper to maximize a posterior density function (MAP) estimator using a bivariate normal random variable. We use our denoising algorithm in 2-D complex wavelet domain comparing with soft and hard thresholding method of stationary wavelet analysis tool (2-D SWT). Despite the simplicity of our method in its implementation, our denoising results achieves better performance than the other mentioned methods both visually and in terms of peak signal-to-noise ratio (PSNR).