Profiling Intel Graphics Architecture with Long Instruction Traces

Konstantin Levit-Gurevich, Alex Skaletsky, Michael Berezalsky, Yulia Kuznetcova, Hila Yakov
{"title":"Profiling Intel Graphics Architecture with Long Instruction Traces","authors":"Konstantin Levit-Gurevich, Alex Skaletsky, Michael Berezalsky, Yulia Kuznetcova, Hila Yakov","doi":"10.1109/ISPASS55109.2022.00001","DOIUrl":null,"url":null,"abstract":"In the process of developing software and hardware, profiling workloads is critical. Binary Instrumentation Technology plays a key role in this task for both x86 architecture and Intel Graphics Processing Units. The GTPin framework is the first tool that allows the profiling of graphics and compute kernels running on Intel GPUs. However, GTPin capabilities are less flexible than x86 profiling tools. In this paper, we introduce the concept of “gLIT” – Long Instruction Trace for Intel GPUs. Generated on real hardware, gLIT can be replayed on a simulator or an emulator running on the CPU device, and thus, can be easily profiled and analyzed “on the fly” with analysis tools of any complexity. Since the graphics devices are extremely parallel, the gLIT trace is, by definition, a multi-threaded trace, reflecting a kernel concurrently running hundreds of hardware threads. The ability to thoroughly profile and analyze workloads is critical for improving hardware and software readiness and creates new possibilities for academic research on Intel graphics devices.","PeriodicalId":115391,"journal":{"name":"2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","volume":"434 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS55109.2022.00001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the process of developing software and hardware, profiling workloads is critical. Binary Instrumentation Technology plays a key role in this task for both x86 architecture and Intel Graphics Processing Units. The GTPin framework is the first tool that allows the profiling of graphics and compute kernels running on Intel GPUs. However, GTPin capabilities are less flexible than x86 profiling tools. In this paper, we introduce the concept of “gLIT” – Long Instruction Trace for Intel GPUs. Generated on real hardware, gLIT can be replayed on a simulator or an emulator running on the CPU device, and thus, can be easily profiled and analyzed “on the fly” with analysis tools of any complexity. Since the graphics devices are extremely parallel, the gLIT trace is, by definition, a multi-threaded trace, reflecting a kernel concurrently running hundreds of hardware threads. The ability to thoroughly profile and analyze workloads is critical for improving hardware and software readiness and creates new possibilities for academic research on Intel graphics devices.
剖析英特尔图形架构与长指令跟踪
在开发软件和硬件的过程中,分析工作负载是至关重要的。对于x86架构和Intel图形处理单元,二进制仪表技术在这项任务中起着关键作用。GTPin框架是第一个允许对运行在英特尔gpu上的图形和计算内核进行分析的工具。然而,GTPin功能不如x86分析工具灵活。在本文中,我们介绍了“gLIT”的概念,即Intel gpu的长指令跟踪。在真实硬件上生成的gLIT可以在模拟器或运行在CPU设备上的模拟器上重放,因此可以使用任何复杂性的分析工具轻松地“动态地”进行概要分析和分析。由于图形设备是高度并行的,因此根据定义,gLIT跟踪是一个多线程跟踪,反映了并发运行数百个硬件线程的内核。全面剖析和分析工作负载的能力对于提高硬件和软件的准备程度至关重要,并为英特尔图形设备的学术研究创造了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信