Curiosity-driven Exploration in VizDoom

Evgeniya Mikhaylova, Ilya Makarov
{"title":"Curiosity-driven Exploration in VizDoom","authors":"Evgeniya Mikhaylova, Ilya Makarov","doi":"10.1109/SISY56759.2022.10036273","DOIUrl":null,"url":null,"abstract":"Efficient exploration remains one of the most challenging aspects of Reinforcement learning. The enormous number of studies devoted to this topic propose different complex methods for enhancing overall performance. For vanilla reinforcement learning algorithms, it can take a tremendous amount of time just to find out the right action, especially for sparse reward environments. One of the solutions that could improve the agent behavior is applying the effective exploration strategy architecture to the baseline methods. This research suggests the examination of several advanced exploration approaches, based on the curiosity bonuses idea. Intrinsic Curiosity Module (ICM) and Random Network Distillation (RND) exploration architectures are applied to the Asynchronous Advantage Actor-Critic (A3C) algorithm. The constructed models are validated in VizDoom environment. This study compares the implemented models with vanilla A3C and Deep Q-Networks algorithms and shows state-of-the-art results in the most complicated scenario Deathmatch.","PeriodicalId":337909,"journal":{"name":"2022 IEEE 20th Jubilee International Symposium on Intelligent Systems and Informatics (SISY)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th Jubilee International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY56759.2022.10036273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient exploration remains one of the most challenging aspects of Reinforcement learning. The enormous number of studies devoted to this topic propose different complex methods for enhancing overall performance. For vanilla reinforcement learning algorithms, it can take a tremendous amount of time just to find out the right action, especially for sparse reward environments. One of the solutions that could improve the agent behavior is applying the effective exploration strategy architecture to the baseline methods. This research suggests the examination of several advanced exploration approaches, based on the curiosity bonuses idea. Intrinsic Curiosity Module (ICM) and Random Network Distillation (RND) exploration architectures are applied to the Asynchronous Advantage Actor-Critic (A3C) algorithm. The constructed models are validated in VizDoom environment. This study compares the implemented models with vanilla A3C and Deep Q-Networks algorithms and shows state-of-the-art results in the most complicated scenario Deathmatch.
《VizDoom》中的好奇心驱动探索
有效的探索仍然是强化学习中最具挑战性的方面之一。针对这一主题的大量研究提出了不同的复杂方法来提高整体性能。对于普通的强化学习算法,它可能需要花费大量的时间来找到正确的行动,特别是在奖励稀少的环境中。将有效的探索策略体系结构应用于基线方法是改善智能体行为的解决方案之一。这项研究建议基于好奇心奖励的想法,对几种先进的勘探方法进行检查。将内在好奇模块(ICM)和随机网络蒸馏(RND)探索架构应用于异步优势参与者-批评者(A3C)算法。构建的模型在VizDoom环境中进行了验证。本研究将实现的模型与普通A3C和Deep Q-Networks算法进行了比较,并在最复杂的场景Deathmatch中展示了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信