A novel Arabic font recognition system based on texture feature and dynamic training

Faten Kallel Jaiem, M. Kherallah
{"title":"A novel Arabic font recognition system based on texture feature and dynamic training","authors":"Faten Kallel Jaiem, M. Kherallah","doi":"10.1504/IJISTA.2017.10008858","DOIUrl":null,"url":null,"abstract":"Recognising an Arabic text with OCR is a complex task caused by the cursive nature of Arabic script for printed and handwritten text. The Arabic letters change forms according to not only their position in the word, but also their font. In fact, developing a font recognition system as a pre-recognition step may help to increase the OCR performances. In this paper, we present an Arabic font recognition system using curvelet transform for feature extraction. Moreover, we expose a new classification strategy based on a back-propagation artificial neural network (BpANN) called a dynamics multi-BpANN-1Class classifier. To validate our proposed system, we first focused our research on a comparative study of five texture analysis techniques. Second, we compared our classifier to a classical BpANN. And finally, we validate the dynamic training for the classification phase.","PeriodicalId":420808,"journal":{"name":"Int. J. Intell. Syst. Technol. Appl.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Syst. Technol. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJISTA.2017.10008858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recognising an Arabic text with OCR is a complex task caused by the cursive nature of Arabic script for printed and handwritten text. The Arabic letters change forms according to not only their position in the word, but also their font. In fact, developing a font recognition system as a pre-recognition step may help to increase the OCR performances. In this paper, we present an Arabic font recognition system using curvelet transform for feature extraction. Moreover, we expose a new classification strategy based on a back-propagation artificial neural network (BpANN) called a dynamics multi-BpANN-1Class classifier. To validate our proposed system, we first focused our research on a comparative study of five texture analysis techniques. Second, we compared our classifier to a classical BpANN. And finally, we validate the dynamic training for the classification phase.
基于纹理特征和动态训练的阿拉伯文字体识别系统
使用OCR识别阿拉伯文本是一项复杂的任务,这是由于印刷和手写文本的阿拉伯文字的草书性质造成的。阿拉伯字母的形式变化不仅取决于它们在单词中的位置,也取决于它们的字体。事实上,开发一个字体识别系统作为预识别步骤可能有助于提高OCR的性能。本文提出了一种利用曲波变换进行特征提取的阿拉伯文字体识别系统。此外,我们提出了一种新的基于反向传播人工神经网络(BpANN)的分类策略,称为动态多BpANN-1类分类器。为了验证我们提出的系统,我们首先对五种纹理分析技术进行了比较研究。其次,我们将我们的分类器与经典的BpANN进行比较。最后,我们验证了分类阶段的动态训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信