{"title":"Scalable Hardware Architecture for Invertible Logic with Sparse Hamiltonian Matrices","authors":"N. Onizawa, A. Tamakoshi, T. Hanyu","doi":"10.1109/SiPS52927.2021.00047","DOIUrl":null,"url":null,"abstract":"We introduce a scalable hardware architecture for large-scale invertible logic. Invertible logic has been recently presented that can realize bidirectional computing probabilis-tically based on Hamiltonians with a small number of non-zero elements. In order to store and compute the Hamiltonians efficiently in hardware, a sparse matrix representation of PTELL (partitioned and transposed ELLPACK) is proposed. A memory size of PTELL can be smaller than that of a conventional ELL by reducing the number of paddings while parallel reading of non-zero values are realized for high-throughput operations. As a result, the proposed scalable invertible-logic hardware based on PTELL is designed on Xilinx KC705 FPGA board, which achieves two orders of magnitude faster than an 8-core CPU implementation.","PeriodicalId":103894,"journal":{"name":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS52927.2021.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We introduce a scalable hardware architecture for large-scale invertible logic. Invertible logic has been recently presented that can realize bidirectional computing probabilis-tically based on Hamiltonians with a small number of non-zero elements. In order to store and compute the Hamiltonians efficiently in hardware, a sparse matrix representation of PTELL (partitioned and transposed ELLPACK) is proposed. A memory size of PTELL can be smaller than that of a conventional ELL by reducing the number of paddings while parallel reading of non-zero values are realized for high-throughput operations. As a result, the proposed scalable invertible-logic hardware based on PTELL is designed on Xilinx KC705 FPGA board, which achieves two orders of magnitude faster than an 8-core CPU implementation.