Trajectory Smoothing Algorithm Based on Kalman Filter

Yingjie Liu, Zhiying Yang
{"title":"Trajectory Smoothing Algorithm Based on Kalman Filter","authors":"Yingjie Liu, Zhiying Yang","doi":"10.1109/CMVIT57620.2023.00019","DOIUrl":null,"url":null,"abstract":"Due to the error of positioning system and signal interference, the real tracking and collected trajectory data usually have multipath effect, and multipath noise obeying bimodal distribution will appear in the trajectory. To verify the different performance of the Kalman filter on Gaussian and non-Gaussian noise, a trajectory smoothing algorithm based on Kalman filter is proposed and experimented on simulated and real trajectory sets. After adding Gaussian noise and non-Gaussian multipath noise to the velocity and position of the trajectory, respectively. The RMSEmax for velocity and position in the 1D trajectory set is 0.21 and 1.11. In the 2D trajectory set, it is 0.97 and 1.51, respectively. And the RMSEmax of latitude and longitude in the real trajectory set is 3.272 × 10−5 and 5.589 × 10−5. Experimental results show that the algorithm can smooth Gaussian noise well, but does not achieve good performance in non-Gaussian noise, although it can reduce the effect of multipath noise on the trajectory position.","PeriodicalId":191655,"journal":{"name":"2023 7th International Conference on Machine Vision and Information Technology (CMVIT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Machine Vision and Information Technology (CMVIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMVIT57620.2023.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the error of positioning system and signal interference, the real tracking and collected trajectory data usually have multipath effect, and multipath noise obeying bimodal distribution will appear in the trajectory. To verify the different performance of the Kalman filter on Gaussian and non-Gaussian noise, a trajectory smoothing algorithm based on Kalman filter is proposed and experimented on simulated and real trajectory sets. After adding Gaussian noise and non-Gaussian multipath noise to the velocity and position of the trajectory, respectively. The RMSEmax for velocity and position in the 1D trajectory set is 0.21 and 1.11. In the 2D trajectory set, it is 0.97 and 1.51, respectively. And the RMSEmax of latitude and longitude in the real trajectory set is 3.272 × 10−5 and 5.589 × 10−5. Experimental results show that the algorithm can smooth Gaussian noise well, but does not achieve good performance in non-Gaussian noise, although it can reduce the effect of multipath noise on the trajectory position.
基于卡尔曼滤波的轨迹平滑算法
由于定位系统误差和信号干扰,实际跟踪和采集的弹道数据通常存在多径效应,弹道中会出现服从双峰分布的多径噪声。为了验证卡尔曼滤波在高斯和非高斯噪声下的不同性能,提出了一种基于卡尔曼滤波的轨迹平滑算法,并在仿真和真实轨迹集上进行了实验。分别对轨迹的速度和位置加入高斯噪声和非高斯多径噪声后。在1D轨迹集合中,速度和位置的RMSEmax分别为0.21和1.11。在二维轨迹集中,分别为0.97和1.51。实际轨迹集的经纬度RMSEmax分别为3.272 × 10−5和5.589 × 10−5。实验结果表明,该算法可以很好地平滑高斯噪声,但在非高斯噪声中性能不佳,虽然可以降低多径噪声对轨迹位置的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信