An efficient algorithm for incremental mining of association rules

Chinchen Chang, Yu-Chiang Li, Jung-San Lee
{"title":"An efficient algorithm for incremental mining of association rules","authors":"Chinchen Chang, Yu-Chiang Li, Jung-San Lee","doi":"10.1109/RIDE.2005.6","DOIUrl":null,"url":null,"abstract":"Incremental algorithms can manipulate the results of earlier mining to derive the final mining output in various businesses. This study proposes a new algorithm, called the New Fast UPdate algorithm (NFUP) for efficiently incrementally mining association rules from a large transaction database. NFUP is a backward method that only requires scanning incremental database. Rather than rescanning the original database for some new generated frequent itemsets in the incremental database, we accumulate the occurrence counts of newly generated frequent itemsets and delete infrequent itemsets obviously. Thus, NFUP need not rescan the original database and to discover newly generated frequent itemsets. NFUP has good scalability in our simulation.","PeriodicalId":404914,"journal":{"name":"15th International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications (RIDE-SDMA'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications (RIDE-SDMA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIDE.2005.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

Incremental algorithms can manipulate the results of earlier mining to derive the final mining output in various businesses. This study proposes a new algorithm, called the New Fast UPdate algorithm (NFUP) for efficiently incrementally mining association rules from a large transaction database. NFUP is a backward method that only requires scanning incremental database. Rather than rescanning the original database for some new generated frequent itemsets in the incremental database, we accumulate the occurrence counts of newly generated frequent itemsets and delete infrequent itemsets obviously. Thus, NFUP need not rescan the original database and to discover newly generated frequent itemsets. NFUP has good scalability in our simulation.
一种高效的关联规则增量挖掘算法
增量算法可以对早期挖掘的结果进行操作,从而得出各种业务的最终挖掘输出。本文提出了一种新的快速更新算法(new Fast UPdate algorithm, NFUP),用于从大型事务数据库中高效地增量挖掘关联规则。NFUP是一种向后的方法,只需要扫描增量数据库。在增量数据库中,我们不再重新扫描原始数据库中新生成的频繁项集,而是将新生成的频繁项集的出现次数累加,并明显删除不频繁的项集。因此,NFUP不需要重新扫描原始数据库并发现新生成的频繁项集。在我们的仿真中NFUP具有良好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信