On extended RLS lattice adaptive filter variants: error-feedback, normalized and array-based algorithms

R. Merched
{"title":"On extended RLS lattice adaptive filter variants: error-feedback, normalized and array-based algorithms","authors":"R. Merched","doi":"10.1109/ICNNSP.2003.1279402","DOIUrl":null,"url":null,"abstract":"This paper develops several lattice structures for RLS orthonormally-based input data structures, including error feedback, normalized and array-based forms. All recursions are theoretically equivalent, however they tend to differ in performance under finite precision effects. As a result, we verify that compared to the standard extended lattice equations, the new variants do not improve robustness to quantization, unlike what is normally expected for FlR models.","PeriodicalId":336216,"journal":{"name":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2003.1279402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops several lattice structures for RLS orthonormally-based input data structures, including error feedback, normalized and array-based forms. All recursions are theoretically equivalent, however they tend to differ in performance under finite precision effects. As a result, we verify that compared to the standard extended lattice equations, the new variants do not improve robustness to quantization, unlike what is normally expected for FlR models.
扩展RLS晶格自适应滤波器变体:误差反馈、归一化和基于数组的算法
本文开发了几种基于RLS正交输入数据结构的格结构,包括误差反馈、归一化和基于数组的形式。所有递归在理论上都是等价的,但是在有限精度效果下,它们的性能往往不同。因此,我们验证了与标准扩展晶格方程相比,新的变体并没有提高量化的鲁棒性,这与FlR模型通常期望的不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信