Pooja P. Bovard, Harry T. Gao, Jason B. Goodman, Zahar Prasov
{"title":"Co-Adapt: Continuously Tailored Software","authors":"Pooja P. Bovard, Harry T. Gao, Jason B. Goodman, Zahar Prasov","doi":"10.1145/3314183.3324971","DOIUrl":null,"url":null,"abstract":"While software tools can be very powerful, a one-size-fits-all approach does not work because individual needs vary over time. Co-Adapt is a software framework that learns from user activity and adjusts the interface in real time to suit changing needs. Prior research has shown that the best in class user interfaces (UI) are not as effective across multiple groups of people. We performed three experiments by integrating with three distinct UI prototypes that tested iteratively tailored software to show the effectiveness of different UI presentations. Co-Adapt demonstrates that a multitude of UIs improve usability, which in some instances lead to greater tool adoption. Our success across three domains suggests generalizability of the framework and is promising for further experimentation across other application areas.","PeriodicalId":240482,"journal":{"name":"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314183.3324971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
While software tools can be very powerful, a one-size-fits-all approach does not work because individual needs vary over time. Co-Adapt is a software framework that learns from user activity and adjusts the interface in real time to suit changing needs. Prior research has shown that the best in class user interfaces (UI) are not as effective across multiple groups of people. We performed three experiments by integrating with three distinct UI prototypes that tested iteratively tailored software to show the effectiveness of different UI presentations. Co-Adapt demonstrates that a multitude of UIs improve usability, which in some instances lead to greater tool adoption. Our success across three domains suggests generalizability of the framework and is promising for further experimentation across other application areas.