Temperature prediction by gene expression programming

Boobphachard Chansawang, M. Waqas, Usa Humphries Wanasing, Phyo Thandar Hlaing, Hnin Aye Lin, Rashid Ali
{"title":"Temperature prediction by gene expression programming","authors":"Boobphachard Chansawang, M. Waqas, Usa Humphries Wanasing, Phyo Thandar Hlaing, Hnin Aye Lin, Rashid Ali","doi":"10.1109/IMCERT57083.2023.10075127","DOIUrl":null,"url":null,"abstract":"Air temperature is a crucial climatic component. Because of ever-changing weather, the prediction has evolved into a difficult feat. This research aims to predict the maximum temperature of the central region of Thailand by Gene expression programming (GEP). This technique is a fast and precise prediction technique results using climate measurements from previous years. The variables needed to construct the model are the daily maximum and minimum temperatures, relative humidity, and precipitation. Using Nash-Sutcliffe efficiency (NSE), Root mean square error (RMSE), and coefficient of determination (R2) statistics, the performance of the GEP was examined. The results indicate that the GEP is reliable for predicting daily temperatures.","PeriodicalId":201596,"journal":{"name":"2023 International Multi-disciplinary Conference in Emerging Research Trends (IMCERT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Multi-disciplinary Conference in Emerging Research Trends (IMCERT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCERT57083.2023.10075127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Air temperature is a crucial climatic component. Because of ever-changing weather, the prediction has evolved into a difficult feat. This research aims to predict the maximum temperature of the central region of Thailand by Gene expression programming (GEP). This technique is a fast and precise prediction technique results using climate measurements from previous years. The variables needed to construct the model are the daily maximum and minimum temperatures, relative humidity, and precipitation. Using Nash-Sutcliffe efficiency (NSE), Root mean square error (RMSE), and coefficient of determination (R2) statistics, the performance of the GEP was examined. The results indicate that the GEP is reliable for predicting daily temperatures.
基于基因表达编程的温度预测
气温是气候的重要组成部分。由于天气不断变化,预测已经演变成一项艰巨的壮举。本研究旨在利用基因表达编程(Gene expression programming, GEP)预测泰国中部地区的最高气温。该技术是一种快速而精确的预测技术,利用往年的气候测量结果。构建模型所需的变量是日最高和最低温度、相对湿度和降水。采用Nash-Sutcliffe效率(NSE)、均方根误差(RMSE)和决定系数(R2)统计量对GEP的性能进行检验。结果表明,GEP预测日气温是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信