Optimal Detection and Classification of Diverse Short-duration Signals

P. Baggenstoss
{"title":"Optimal Detection and Classification of Diverse Short-duration Signals","authors":"P. Baggenstoss","doi":"10.1109/IC2E.2014.96","DOIUrl":null,"url":null,"abstract":"Recent theoretical advances in class-dependent feature extraction are reviewed. These advances, culminating in the multi-resolution HMM (MR-HMM) statistical model are proposed for the detection and classification of transient signals that are composed of diverse components with widely varying structure and resolution.","PeriodicalId":273902,"journal":{"name":"2014 IEEE International Conference on Cloud Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Cloud Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E.2014.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recent theoretical advances in class-dependent feature extraction are reviewed. These advances, culminating in the multi-resolution HMM (MR-HMM) statistical model are proposed for the detection and classification of transient signals that are composed of diverse components with widely varying structure and resolution.
各种短时信号的最优检测与分类
综述了近年来类相关特征提取的理论进展。这些进步,最终提出了多分辨率HMM (MR-HMM)统计模型,用于检测和分类由多种成分组成的具有广泛变化结构和分辨率的瞬态信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信