Lagrangian mechanics for fields

A. Steane
{"title":"Lagrangian mechanics for fields","authors":"A. Steane","doi":"10.1093/oso/9780192895646.003.0028","DOIUrl":null,"url":null,"abstract":"An introduction to Lagrangian methods for classical fields in flat spacetime and then in curved spacetime. The Euler-Lagrange equations for Lagrangian densities are obtained, and applied to the wave, Klein-Gordan, Weyl, Dirac, Maxwell and Proca equations. The canonical energy tensor is obtained. Conservation laws and Noether’s theorem are described. An example of the treatment of Interactions is given by presenting the the QED Lagrangian. Finally, covariant Lagrangian methods are described, and the Einstein field eqution is derived from the Einstein-Hilbert action.","PeriodicalId":365636,"journal":{"name":"Relativity Made Relatively Easy Volume 2","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Relativity Made Relatively Easy Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192895646.003.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An introduction to Lagrangian methods for classical fields in flat spacetime and then in curved spacetime. The Euler-Lagrange equations for Lagrangian densities are obtained, and applied to the wave, Klein-Gordan, Weyl, Dirac, Maxwell and Proca equations. The canonical energy tensor is obtained. Conservation laws and Noether’s theorem are described. An example of the treatment of Interactions is given by presenting the the QED Lagrangian. Finally, covariant Lagrangian methods are described, and the Einstein field eqution is derived from the Einstein-Hilbert action.
场的拉格朗日力学
介绍了在平坦时空和弯曲时空中经典场的拉格朗日方法。得到了拉格朗日密度的欧拉-拉格朗日方程,并将其应用于波、Klein-Gordan、Weyl、Dirac、Maxwell和Proca方程。得到正则能量张量。描述了守恒定律和诺特定理。通过给出QED拉格朗日,给出了处理相互作用的一个例子。最后,描述了协变拉格朗日方法,并从爱因斯坦-希尔伯特作用导出了爱因斯坦场方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信