Join queries on uncertain data: Semantics and efficient processing

Tingjian Ge
{"title":"Join queries on uncertain data: Semantics and efficient processing","authors":"Tingjian Ge","doi":"10.1109/ICDE.2011.5767888","DOIUrl":null,"url":null,"abstract":"Uncertain data is quite common nowadays in a variety of modern database applications. At the same time, the join operation is one of the most important but expensive operations in SQL. However, join queries on uncertain data have not been adequately addressed thus far. In this paper, we study the SQL join operation on uncertain attributes. We observe and formalize two kinds of join operations on such data, namely v-join and d-join. They are each useful for different applications. Using probability theory, we then devise efficient query processing algorithms for these join operations. Specifically, we use probability bounds that are based on the moments of random variables to either early accept or early reject a candidate v-join result tuple. We also devise an indexing mechanism and an algorithm called Two-End Zigzag Join to further save I/O costs. For d-join, we first observe that it can be reduced to a special form of similarity join in a multidimensional space. We then design an efficient algorithm called condensed d-join and an optimal condensation scheme based on dynamic programming. Finally, we perform a comprehensive empirical study using both real datasets and synthetic datasets.","PeriodicalId":332374,"journal":{"name":"2011 IEEE 27th International Conference on Data Engineering","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 27th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2011.5767888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Uncertain data is quite common nowadays in a variety of modern database applications. At the same time, the join operation is one of the most important but expensive operations in SQL. However, join queries on uncertain data have not been adequately addressed thus far. In this paper, we study the SQL join operation on uncertain attributes. We observe and formalize two kinds of join operations on such data, namely v-join and d-join. They are each useful for different applications. Using probability theory, we then devise efficient query processing algorithms for these join operations. Specifically, we use probability bounds that are based on the moments of random variables to either early accept or early reject a candidate v-join result tuple. We also devise an indexing mechanism and an algorithm called Two-End Zigzag Join to further save I/O costs. For d-join, we first observe that it can be reduced to a special form of similarity join in a multidimensional space. We then design an efficient algorithm called condensed d-join and an optimal condensation scheme based on dynamic programming. Finally, we perform a comprehensive empirical study using both real datasets and synthetic datasets.
不确定数据上的联接查询:语义和高效处理
在各种现代数据库应用中,不确定数据是非常普遍的。同时,连接操作是SQL中最重要但开销最大的操作之一。然而,到目前为止,对不确定数据的连接查询还没有得到充分的解决。本文研究了不确定属性下的SQL连接操作。我们观察并形式化了这类数据上的两种连接操作,即v-join和d-join。它们对于不同的应用程序都很有用。然后,我们使用概率论为这些连接操作设计有效的查询处理算法。具体来说,我们使用基于随机变量矩的概率界限来提前接受或提前拒绝候选v-join结果元组。我们还设计了一种索引机制和一种称为两端之字形连接的算法,以进一步节省I/O成本。对于d-join,我们首先观察到它可以简化为多维空间中的一种特殊形式的相似连接。然后,我们设计了一种高效的冷凝d-join算法和基于动态规划的最优冷凝方案。最后,我们使用真实数据集和合成数据集进行了全面的实证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信