LSTM Based Prediction of Total Dissolved Solids in Hydroponic System

R. Puriyanto, Supriyanto, A. Yudhana
{"title":"LSTM Based Prediction of Total Dissolved Solids in Hydroponic System","authors":"R. Puriyanto, Supriyanto, A. Yudhana","doi":"10.2991/adics-es-19.2019.13","DOIUrl":null,"url":null,"abstract":"This paper discusses the implementation of long short term memory (LSTM) for forecasting the value of total dissolved solids (TDS). The TDS value in a hydroponic system represents the number of nutrients contained in water. The amount of water in the hydroponic system is important to note because optimal plant growth depends on the number of nutrients obtained by the plant. TDS data is sequential data, and one way to do forecasting is to use LSTM. This study uses a combination of epoch values of 100, 200, 300, 400 and 500. The RMSE values of on any combinations 57.41, 50.90, 57.81, 67.60 and 26.62. In general, the smallest RMSE value of each combination produces a graph that is close to except for a 70%: 30% combination. The greater use of training data compared to test data (90%: 10%) results in the smallest average RMSE value of 35.48. Keywords—LSTM, forecasting, hydroponic, total dissolved solids","PeriodicalId":163074,"journal":{"name":"Proceedings of the 2019 Ahmad Dahlan International Conference Series on Engineering and Science (ADICS-ES 2019)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 Ahmad Dahlan International Conference Series on Engineering and Science (ADICS-ES 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/adics-es-19.2019.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper discusses the implementation of long short term memory (LSTM) for forecasting the value of total dissolved solids (TDS). The TDS value in a hydroponic system represents the number of nutrients contained in water. The amount of water in the hydroponic system is important to note because optimal plant growth depends on the number of nutrients obtained by the plant. TDS data is sequential data, and one way to do forecasting is to use LSTM. This study uses a combination of epoch values of 100, 200, 300, 400 and 500. The RMSE values of on any combinations 57.41, 50.90, 57.81, 67.60 and 26.62. In general, the smallest RMSE value of each combination produces a graph that is close to except for a 70%: 30% combination. The greater use of training data compared to test data (90%: 10%) results in the smallest average RMSE value of 35.48. Keywords—LSTM, forecasting, hydroponic, total dissolved solids
基于LSTM的水培体系总溶解固形物预测
本文讨论了长短期记忆(LSTM)在预测总溶解固形物(TDS)值中的应用。水培系统的TDS值代表了水中所含营养物质的数量。水培系统中的水量很重要,因为最佳的植物生长取决于植物获得的营养物质的数量。TDS数据是顺序数据,进行预测的一种方法是使用LSTM。本研究使用了100、200、300、400和500历元值的组合。的RMSE值为57.41、50.90、57.81、67.60和26.62。一般来说,除了70%:30%的组合外,每个组合的最小RMSE值产生的图接近。与测试数据(90%:10%)相比,训练数据的使用量越大,平均RMSE值越小,为35.48。关键词:lstm;预报;水培
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信