From Modern Standard Arabic to Levantine ASR: Leveraging GALE for dialects

H. Soltau, L. Mangu, Fadi Biadsy
{"title":"From Modern Standard Arabic to Levantine ASR: Leveraging GALE for dialects","authors":"H. Soltau, L. Mangu, Fadi Biadsy","doi":"10.1109/ASRU.2011.6163942","DOIUrl":null,"url":null,"abstract":"We report a series of experiments about how we can progress from Modern Standard Arabic (MSA) to Levantine ASR, in the context of the GALE DARPA program. While our GALE models achieved very low error rates, we still see error rates twice as high when decoding dialectal data. In this paper, we make use of a state-of-the-art Arabic dialect recognition system to automatically identify Levantine and MSA subsets in mixed speech of a variety of dialects including MSA. Training separate models on these subsets, we show a significant reduction in word error rate over using the entire data set to train one system for both dialects. During decoding, we use a tree array structure to mix Levantine and MSA models automatically using the posterior probabilities of the dialect classifier as soft weights. This technique allows us to mix these models without sacrificing performance for either varieties. Furthermore, using the initial acoustic-based dialect recognition system's output, we show that we can bootstrap a text-based dialect classifier and use it to identify relevant text data for building Levantine language models. Moreover, we compare different vowelization approaches when transitioning from MSA to Levantine models.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We report a series of experiments about how we can progress from Modern Standard Arabic (MSA) to Levantine ASR, in the context of the GALE DARPA program. While our GALE models achieved very low error rates, we still see error rates twice as high when decoding dialectal data. In this paper, we make use of a state-of-the-art Arabic dialect recognition system to automatically identify Levantine and MSA subsets in mixed speech of a variety of dialects including MSA. Training separate models on these subsets, we show a significant reduction in word error rate over using the entire data set to train one system for both dialects. During decoding, we use a tree array structure to mix Levantine and MSA models automatically using the posterior probabilities of the dialect classifier as soft weights. This technique allows us to mix these models without sacrificing performance for either varieties. Furthermore, using the initial acoustic-based dialect recognition system's output, we show that we can bootstrap a text-based dialect classifier and use it to identify relevant text data for building Levantine language models. Moreover, we compare different vowelization approaches when transitioning from MSA to Levantine models.
从现代标准阿拉伯语到黎凡特ASR:利用GALE进行方言
在GALE DARPA项目的背景下,我们报告了一系列关于如何从现代标准阿拉伯语(MSA)发展到黎凡特ASR的实验。虽然我们的GALE模型实现了非常低的错误率,但在解码方言数据时,我们仍然看到错误率高达两倍。在本文中,我们利用最先进的阿拉伯语方言识别系统来自动识别包括MSA在内的各种方言混合语音中的黎凡特语和MSA子集。在这些子集上训练单独的模型,我们发现与使用整个数据集来训练两种方言的一个系统相比,单词错误率显著降低。在解码过程中,我们使用树数组结构将方言分类器的后验概率作为软权重自动混合黎凡特模型和MSA模型。这种技术允许我们混合这些模型,而不会牺牲任何一个品种的性能。此外,利用最初的基于声学的方言识别系统的输出,我们展示了我们可以引导一个基于文本的方言分类器,并使用它来识别相关的文本数据,以构建黎凡特语言模型。此外,我们比较了从MSA模式到黎凡特模式的不同元音化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信