Scalability of the NewMadeleine Communication Library for Large Numbers of MPI Point-to-Point Requests

Alexandre Denis
{"title":"Scalability of the NewMadeleine Communication Library for Large Numbers of MPI Point-to-Point Requests","authors":"Alexandre Denis","doi":"10.1109/CCGRID.2019.00051","DOIUrl":null,"url":null,"abstract":"New kinds of applications with lots of threads or irregular communication patterns which rely a lot on point-to-point MPI communications have emerged. It stresses the MPI library with potentially a lot of simultaneous MPI requests for sending and receiving at the same time. To deal with large numbers of simultaneous requests, the bottleneck lies in two main mechanisms: the tag-matching (the algorithm that matches an incoming packet with a posted receive request), and the progression engine. In this paper, we propose algorithms and implementations that overcome these issues so as to scale up to thousands of requests if needed. In particular our algorithms are able to perform constant-time tag-matching even with any-source and any-tag support. We have implemented these mechanisms in our NewMadeleine communication library. Through micro-benchmarks and computation kernel benchmarks, we demonstrate that our MPI library exhibits better performance than state-of-the-art MPI implementations in cases with many simultaneous requests.","PeriodicalId":234571,"journal":{"name":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2019.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

New kinds of applications with lots of threads or irregular communication patterns which rely a lot on point-to-point MPI communications have emerged. It stresses the MPI library with potentially a lot of simultaneous MPI requests for sending and receiving at the same time. To deal with large numbers of simultaneous requests, the bottleneck lies in two main mechanisms: the tag-matching (the algorithm that matches an incoming packet with a posted receive request), and the progression engine. In this paper, we propose algorithms and implementations that overcome these issues so as to scale up to thousands of requests if needed. In particular our algorithms are able to perform constant-time tag-matching even with any-source and any-tag support. We have implemented these mechanisms in our NewMadeleine communication library. Through micro-benchmarks and computation kernel benchmarks, we demonstrate that our MPI library exhibits better performance than state-of-the-art MPI implementations in cases with many simultaneous requests.
针对大量MPI点对点请求的NewMadeleine通信库的可扩展性
大量依赖点对点MPI通信的具有大量线程或不规则通信模式的新型应用程序已经出现。它强调MPI库可能同时发送和接收大量的MPI请求。要处理大量同时发生的请求,瓶颈在于两个主要机制:标记匹配(将传入数据包与发布的接收请求相匹配的算法)和进程引擎。在本文中,我们提出了克服这些问题的算法和实现,以便在需要时扩展到数千个请求。特别是,我们的算法能够执行恒定时间标签匹配,甚至与任何来源和任何标签的支持。我们已经在NewMadeleine通信库中实现了这些机制。通过微基准测试和计算内核基准测试,我们证明我们的MPI库在有许多并发请求的情况下比最先进的MPI实现表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信