Mathematical Determinacy

Jared Warren
{"title":"Mathematical Determinacy","authors":"Jared Warren","doi":"10.1093/oso/9780190086152.003.0010","DOIUrl":null,"url":null,"abstract":"This chapter addresses the second major challenge for the extension of conventionalism from logic to mathematics: the richness of mathematical truth. The chapter begins by distinguishing indeterminacy from pluralism and clarifying the crucial notion of open-endedness. It then critically discusses the two major strategies for securing arithmetical categoricity using open-endedness; one based on a collapse theorem, the other on a kind of anti-overspill idea. With this done, a new argument for the categoricity of arithmetic is then presented. In subsequent discussion, the philosophical importance of this categoricity result is called into question to some degree. The categoricity argument is then supplemented by an appeal to the infinitary omega rule, and an argument is given that beings like us can actually follow the omega rule without any violation of Church’s thesis. Finally, the chapter discusses the extension of this type of approach beyond arithmetic, to set theory and the rest of mathematics.","PeriodicalId":127100,"journal":{"name":"Shadows of Syntax","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shadows of Syntax","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780190086152.003.0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter addresses the second major challenge for the extension of conventionalism from logic to mathematics: the richness of mathematical truth. The chapter begins by distinguishing indeterminacy from pluralism and clarifying the crucial notion of open-endedness. It then critically discusses the two major strategies for securing arithmetical categoricity using open-endedness; one based on a collapse theorem, the other on a kind of anti-overspill idea. With this done, a new argument for the categoricity of arithmetic is then presented. In subsequent discussion, the philosophical importance of this categoricity result is called into question to some degree. The categoricity argument is then supplemented by an appeal to the infinitary omega rule, and an argument is given that beings like us can actually follow the omega rule without any violation of Church’s thesis. Finally, the chapter discusses the extension of this type of approach beyond arithmetic, to set theory and the rest of mathematics.
数学确定性
本章讨论了从逻辑向数学扩展惯例主义的第二个主要挑战:数学真理的丰富性。本章首先区分不确定性和多元主义,并澄清开放性的关键概念。然后批判性地讨论了使用开放性确保算术范畴性的两种主要策略;一个基于坍缩定理,另一个基于一种反溢出思想。在此基础上,提出了一个关于算术范畴性的新论证。在随后的讨论中,这个范畴性结果的哲学重要性在某种程度上受到质疑。然后,对无限欧米伽规则的呼吁补充了范畴性论证,并给出了一个论证,即像我们这样的生物实际上可以遵循欧米伽规则,而不会违反丘奇的论点。最后,本章讨论了这种方法在算术之外的扩展,到集合论和其他数学领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信