How to Speed Up CUDA-WSat-PcL by 5x

Heng Liu, Arrvindh Shriraman, Evgenia Ternovska
{"title":"How to Speed Up CUDA-WSat-PcL by 5x","authors":"Heng Liu, Arrvindh Shriraman, Evgenia Ternovska","doi":"10.1109/CANDAR.2016.0087","DOIUrl":null,"url":null,"abstract":"The Propositional Satisfiability Problem (SAT) is one of the most fundamental NP-complete problems, and is central to many domains of computer science. Utilizing a massively parallel architecture on a Graphics Processing Unit (GPU) together with a conventional CPU on NVIDIA's Compute Unified Device Architecture (CUDA) platform, this work proposes an efficient scheme to implement one parallel Stochastic Local Search (SLS) algorithms for SAT: CUDA-WSat-PcL. The implementation leads up to 5x speedup over the latest implementation of CUDA-WSat-PcL on CUDA. Additionally, our profiling results show that the CUDA portion of the new implementation is now at least 6x faster.","PeriodicalId":322499,"journal":{"name":"2016 Fourth International Symposium on Computing and Networking (CANDAR)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Symposium on Computing and Networking (CANDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDAR.2016.0087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Propositional Satisfiability Problem (SAT) is one of the most fundamental NP-complete problems, and is central to many domains of computer science. Utilizing a massively parallel architecture on a Graphics Processing Unit (GPU) together with a conventional CPU on NVIDIA's Compute Unified Device Architecture (CUDA) platform, this work proposes an efficient scheme to implement one parallel Stochastic Local Search (SLS) algorithms for SAT: CUDA-WSat-PcL. The implementation leads up to 5x speedup over the latest implementation of CUDA-WSat-PcL on CUDA. Additionally, our profiling results show that the CUDA portion of the new implementation is now at least 6x faster.
如何将CUDA-WSat-PcL加速5倍
命题可满足性问题(SAT)是最基本的np完全问题之一,是计算机科学许多领域的核心问题。利用图形处理单元(GPU)上的大规模并行架构以及NVIDIA的计算统一设备架构(CUDA)平台上的传统CPU,本工作提出了一种有效的方案来实现SAT的并行随机局部搜索(SLS)算法:CUDA- wsat - pcl。与CUDA上最新的CUDA- wsat - pcl实现相比,该实现的速度提高了5倍。此外,我们的分析结果表明,新实现的CUDA部分现在至少快了6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信