Rishikesh R. Gajjala, Shashwat Banchhor, A. Abdelmoniem, Aritra Dutta, M. Canini, Panos Kalnis
{"title":"Huffman Coding Based Encoding Techniques for Fast Distributed Deep Learning","authors":"Rishikesh R. Gajjala, Shashwat Banchhor, A. Abdelmoniem, Aritra Dutta, M. Canini, Panos Kalnis","doi":"10.1145/3426745.3431334","DOIUrl":null,"url":null,"abstract":"Distributed stochastic algorithms, equipped with gradient compression techniques, such as codebook quantization, are becoming increasingly popular and considered state-of-the-art in training large deep neural network (DNN) models. However, communicating the quantized gradients in a network requires efficient encoding techniques. For this, practitioners generally use Elias encoding-based techniques without considering their computational overhead or data-volume. In this paper, based on Huffman coding, we propose several lossless encoding techniques that exploit different characteristics of the quantized gradients during distributed DNN training. Then, we show their effectiveness on 5 different DNN models across three different data-sets, and compare them with classic state-of-the-art Elias-based encoding techniques. Our results show that the proposed Huffman-based encoders (i.e., RLH, SH, and SHS) can reduce the encoded data-volume by up to 5.1×, 4.32×, and 3.8×, respectively, compared to the Elias-based encoders.","PeriodicalId":301937,"journal":{"name":"Proceedings of the 1st Workshop on Distributed Machine Learning","volume":"13 12 Pt 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Distributed Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3426745.3431334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Distributed stochastic algorithms, equipped with gradient compression techniques, such as codebook quantization, are becoming increasingly popular and considered state-of-the-art in training large deep neural network (DNN) models. However, communicating the quantized gradients in a network requires efficient encoding techniques. For this, practitioners generally use Elias encoding-based techniques without considering their computational overhead or data-volume. In this paper, based on Huffman coding, we propose several lossless encoding techniques that exploit different characteristics of the quantized gradients during distributed DNN training. Then, we show their effectiveness on 5 different DNN models across three different data-sets, and compare them with classic state-of-the-art Elias-based encoding techniques. Our results show that the proposed Huffman-based encoders (i.e., RLH, SH, and SHS) can reduce the encoded data-volume by up to 5.1×, 4.32×, and 3.8×, respectively, compared to the Elias-based encoders.