Optimal Capacity Allocation for Executing MapReduce Jobs in Cloud Systems

M. Malekimajd, A. M. Rizzi, D. Ardagna, M. Ciavotta, M. Passacantando, A. Movaghar
{"title":"Optimal Capacity Allocation for Executing MapReduce Jobs in Cloud Systems","authors":"M. Malekimajd, A. M. Rizzi, D. Ardagna, M. Ciavotta, M. Passacantando, A. Movaghar","doi":"10.1109/SYNASC.2014.58","DOIUrl":null,"url":null,"abstract":"Nowadays, analyzing large amount of data is of paramount importance for many companies. Big data and business intelligence applications are facilitated by the MapReduce programming model while, at infrastructural layer, cloud computing provides flexible and cost effective solutions for allocating on demand large clusters. Capacity allocation in such systems is a key challenge to providing performance for MapReduce jobs and minimize cloud resource cost. The contribution of this paper is twofold: (i) we formulate a linear programming model able to minimize cloud resources cost and job rejection penalties for the execution of jobs of multiple classes with (soft) deadline guarantees, (ii) we provide new upper and lower bounds for MapReduce job execution time in shared Hadoop clusters. Moreover, our solutions are validated by a large set of experiments. We demonstrate that our method is able to determine the global optimal solution for systems including up to 1000 user classes in less than 0.5 seconds. Moreover, the execution time of MapReduce jobs are within 19% of our upper bounds on average.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Nowadays, analyzing large amount of data is of paramount importance for many companies. Big data and business intelligence applications are facilitated by the MapReduce programming model while, at infrastructural layer, cloud computing provides flexible and cost effective solutions for allocating on demand large clusters. Capacity allocation in such systems is a key challenge to providing performance for MapReduce jobs and minimize cloud resource cost. The contribution of this paper is twofold: (i) we formulate a linear programming model able to minimize cloud resources cost and job rejection penalties for the execution of jobs of multiple classes with (soft) deadline guarantees, (ii) we provide new upper and lower bounds for MapReduce job execution time in shared Hadoop clusters. Moreover, our solutions are validated by a large set of experiments. We demonstrate that our method is able to determine the global optimal solution for systems including up to 1000 user classes in less than 0.5 seconds. Moreover, the execution time of MapReduce jobs are within 19% of our upper bounds on average.
云系统中MapReduce任务的最优容量分配
如今,分析大量数据对许多公司来说是至关重要的。MapReduce编程模型为大数据和商业智能应用提供了便利,而在基础设施层,云计算为按需分配大型集群提供了灵活且经济高效的解决方案。在这样的系统中,容量分配是为MapReduce作业提供性能和最小化云资源成本的关键挑战。本文的贡献是双重的:(i)我们制定了一个线性规划模型,能够最大限度地减少云资源成本和执行具有(软)截止日期保证的多类作业的作业拒绝处罚,(ii)我们提供了共享Hadoop集群中MapReduce作业执行时间的新上限和下限。此外,我们的解决方案已通过大量实验验证。我们证明了我们的方法能够在不到0.5秒的时间内确定包含多达1000个用户类的系统的全局最优解。此外,MapReduce作业的执行时间平均在上限的19%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信