Non-Intrusive Load Monitoring for Multi-objects in Smart Building

Dandan Li, Jiangfeng Li, Xinhua Zeng, V. Stanković, L. Stanković, Qingjiang Shi
{"title":"Non-Intrusive Load Monitoring for Multi-objects in Smart Building","authors":"Dandan Li, Jiangfeng Li, Xinhua Zeng, V. Stanković, L. Stanković, Qingjiang Shi","doi":"10.1109/BalkanCom53780.2021.9593224","DOIUrl":null,"url":null,"abstract":"The rapidly expansion of Internet of Things (IoT) has ignited renewed interest in energy disaggregation via non-intrusive load monitoring (NILM). Compared to the more frequent NILM approach of training one model for each appliance, this paper proposes a multi-label learning approach based on the widely cited sequence2point convolutional neural network (CNN). Using the smart meter readings collected in an office building, we demonstrate the accuracy and practicality of the proposed network compared to start-of-the-art one-to-one NILM models.","PeriodicalId":115090,"journal":{"name":"2021 International Balkan Conference on Communications and Networking (BalkanCom)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Balkan Conference on Communications and Networking (BalkanCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BalkanCom53780.2021.9593224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The rapidly expansion of Internet of Things (IoT) has ignited renewed interest in energy disaggregation via non-intrusive load monitoring (NILM). Compared to the more frequent NILM approach of training one model for each appliance, this paper proposes a multi-label learning approach based on the widely cited sequence2point convolutional neural network (CNN). Using the smart meter readings collected in an office building, we demonstrate the accuracy and practicality of the proposed network compared to start-of-the-art one-to-one NILM models.
智能建筑中多目标非侵入式负荷监控
物联网(IoT)的快速发展重新点燃了人们对通过非侵入式负荷监测(NILM)进行能源分解的兴趣。与更常见的为每个设备训练一个模型的NILM方法相比,本文提出了一种基于广泛引用的sequence2point卷积神经网络(CNN)的多标签学习方法。通过在办公楼中收集的智能电表读数,我们证明了与最先进的一对一NILM模型相比,所提出网络的准确性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信