Unsupervised restoration in Gaussian Pairwise Mixture Model

S. Derrode, W. Pieczynski
{"title":"Unsupervised restoration in Gaussian Pairwise Mixture Model","authors":"S. Derrode, W. Pieczynski","doi":"10.5281/ZENODO.42336","DOIUrl":null,"url":null,"abstract":"The idea behind the Pairwise Mixture Model (PMM) we propose in this work is to classify simultaneously two sets of observations by introducing a joint prior between the two corresponding classifications and some inter-dependence between the two observations. We address the Bayesian restoration of PMM using either MPM or MAP criteria, and an EM-based parameters estimation algorithm by extending the work done for classical Mixture Model (MM). Systematic experiments conducted on simulated data shows the effectiveness of the model when compared to the MM, both in supervised and unsupervised contexts.","PeriodicalId":331889,"journal":{"name":"2011 19th European Signal Processing Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The idea behind the Pairwise Mixture Model (PMM) we propose in this work is to classify simultaneously two sets of observations by introducing a joint prior between the two corresponding classifications and some inter-dependence between the two observations. We address the Bayesian restoration of PMM using either MPM or MAP criteria, and an EM-based parameters estimation algorithm by extending the work done for classical Mixture Model (MM). Systematic experiments conducted on simulated data shows the effectiveness of the model when compared to the MM, both in supervised and unsupervised contexts.
高斯配对混合模型的无监督恢复
我们在这项工作中提出的成对混合模型(PMM)背后的思想是通过引入两个相应分类之间的联合先验和两个观测值之间的一些相互依赖性来同时对两组观测值进行分类。我们通过扩展经典混合模型(MM)的工作,使用MPM或MAP标准和基于em的参数估计算法来解决PMM的贝叶斯恢复问题。在模拟数据上进行的系统实验表明,与MM相比,该模型在有监督和无监督环境下都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信