Parallel Speculative Computation of Simulated Annealing

A. Sohn
{"title":"Parallel Speculative Computation of Simulated Annealing","authors":"A. Sohn","doi":"10.1109/ICPP.1994.154","DOIUrl":null,"url":null,"abstract":"Simulated annealing is known to be highly sequential due to loop-carried dependencies. This report presents a new approach to parallel simulated annealing, called generalized speculative computation (GSC). We use an n-ary speculative tree and loop indices to execute n iterations in parallel on n processors while maintaining the same decision sequence as sequential simulated annealing. To verify the performance of GSC, we implement 100- to 500-city Traveling Salesman Problems on the AP1000 massively parallel multiprocessor. Execution results demonstrate that the GSC approach can indeed be an effective method for simulated annealing. We obtain over 20-fold speedup for the initial temperature of 0.1 and 11-fold speedup for the initial temperature of 10, all on 100 processors.","PeriodicalId":162043,"journal":{"name":"1994 International Conference on Parallel Processing Vol. 3","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 International Conference on Parallel Processing Vol. 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.1994.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Simulated annealing is known to be highly sequential due to loop-carried dependencies. This report presents a new approach to parallel simulated annealing, called generalized speculative computation (GSC). We use an n-ary speculative tree and loop indices to execute n iterations in parallel on n processors while maintaining the same decision sequence as sequential simulated annealing. To verify the performance of GSC, we implement 100- to 500-city Traveling Salesman Problems on the AP1000 massively parallel multiprocessor. Execution results demonstrate that the GSC approach can indeed be an effective method for simulated annealing. We obtain over 20-fold speedup for the initial temperature of 0.1 and 11-fold speedup for the initial temperature of 10, all on 100 processors.
模拟退火的并行推测计算
模拟退火是众所周知的高度顺序由于环携带的依赖。本文提出了一种新的并行模拟退火方法,称为广义推测计算(GSC)。我们使用n元推测树和循环索引在n个处理器上并行执行n次迭代,同时保持与顺序模拟退火相同的决策序列。为了验证GSC的性能,我们在AP1000大规模并行多处理器上实现了100到500个城市的旅行商问题。执行结果表明,GSC方法确实是一种有效的模拟退火方法。我们在初始温度为0.1时获得了20倍以上的加速,在初始温度为10时获得了11倍的加速,所有这些都是在100个处理器上实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信