Investigation into Star Tracker Algorithms using Smartphones with Application to High-Precision Pointing CubeSats

Joshua J. R. Critchley-Marrows, Xiaofeng Wu
{"title":"Investigation into Star Tracker Algorithms using Smartphones with Application to High-Precision Pointing CubeSats","authors":"Joshua J. R. Critchley-Marrows, Xiaofeng Wu","doi":"10.2322/TASTJ.17.327","DOIUrl":null,"url":null,"abstract":"For all common satellite attitude determination sensors, star trackers provide the most accurate measurement. However, these devices can be both large and expensive, and for some CubeSat applications it would not be suitable. Star trackers have in the past been successfully made for CubeSats. This paper investigates star tracker algorithms, implemented with a smartphone, so it may be used for testing attitude determination on a CubeSat. By testing through a proposed implementation, star centroids should be found by the moment method, stars should be identified by planar triangles, and QUEST should be used for attitude estimation. Smeared star images should be avoided and blurred images provide greater accuracy. Using these techniques, a star tracker using a smartphone may be constructed for attitude determination testing and software development, applied in the lost-in-space situation. This may be applied to QKD CubeSats, which require an attitude precision below 0.01","PeriodicalId":120185,"journal":{"name":"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/TASTJ.17.327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For all common satellite attitude determination sensors, star trackers provide the most accurate measurement. However, these devices can be both large and expensive, and for some CubeSat applications it would not be suitable. Star trackers have in the past been successfully made for CubeSats. This paper investigates star tracker algorithms, implemented with a smartphone, so it may be used for testing attitude determination on a CubeSat. By testing through a proposed implementation, star centroids should be found by the moment method, stars should be identified by planar triangles, and QUEST should be used for attitude estimation. Smeared star images should be avoided and blurred images provide greater accuracy. Using these techniques, a star tracker using a smartphone may be constructed for attitude determination testing and software development, applied in the lost-in-space situation. This may be applied to QKD CubeSats, which require an attitude precision below 0.01
基于智能手机的星跟踪器算法及其在高精度指向立方体卫星上的应用研究
对于所有常见的卫星姿态确定传感器,星跟踪器提供最精确的测量。然而,这些设备既大又贵,对于一些立方体卫星应用来说,它并不合适。过去曾成功地为立方体卫星制造过恒星追踪器。本文研究了用智能手机实现的星跟踪器算法,因此它可以用于立方体卫星的姿态确定测试。通过所提实现的测试,采用矩量法寻找星质心,采用平面三角形识别星,采用QUEST进行姿态估计。应避免模糊的星图,模糊的图像提供更高的精度。利用这些技术,可以构建一个使用智能手机的星跟踪器,用于姿态确定测试和软件开发,应用于迷失空间的情况。这可能适用于要求姿态精度低于0.01的QKD立方体卫星
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信