Behavior model for detecting data exfiltration in network environment

Rajamenakshi Ramachandran, Subramanian Neelakantan, Ajay Shankar Bidyarthy
{"title":"Behavior model for detecting data exfiltration in network environment","authors":"Rajamenakshi Ramachandran, Subramanian Neelakantan, Ajay Shankar Bidyarthy","doi":"10.1109/IMSAA.2011.6156340","DOIUrl":null,"url":null,"abstract":"There is a growing concern across the globe about exfiltration of sensitive data over network. This coupled with the increase in other insider threats pose greater challenge. Present day perimeter security solutions such as Intrusion detection & prevention system, firewall are not capable of detecting data-exfiltration. Also existing behavior models that can detect intrusions and worms do not incorporate mechanims to detect data-exfiltration. Devising an exclusive behavior based model is essential to detect data-exfiltration over network by utilizing parameters from both system and network. In this paper, we present a behavior approach based on Kernel Density Estimation (KDE) and co-relation co-efficient methods to detect data-exfiltration. Firstly, during the learning phase, we profile each host in a network and compute KDE values individually for system and network parameters. Secondly, during the detection phase we compute KDEs for the identified parameters and then correlate current KDE values with the learnt KDE values using Carl Pearsons correlation coefficient method to detect data-exfiltration over the network. We present our approach, analysis and the findings based on our model. Results obtained reveal that our approach detect data-exfiltration incidents over the network.","PeriodicalId":445751,"journal":{"name":"2011 IEEE 5th International Conference on Internet Multimedia Systems Architecture and Application","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 5th International Conference on Internet Multimedia Systems Architecture and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSAA.2011.6156340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

There is a growing concern across the globe about exfiltration of sensitive data over network. This coupled with the increase in other insider threats pose greater challenge. Present day perimeter security solutions such as Intrusion detection & prevention system, firewall are not capable of detecting data-exfiltration. Also existing behavior models that can detect intrusions and worms do not incorporate mechanims to detect data-exfiltration. Devising an exclusive behavior based model is essential to detect data-exfiltration over network by utilizing parameters from both system and network. In this paper, we present a behavior approach based on Kernel Density Estimation (KDE) and co-relation co-efficient methods to detect data-exfiltration. Firstly, during the learning phase, we profile each host in a network and compute KDE values individually for system and network parameters. Secondly, during the detection phase we compute KDEs for the identified parameters and then correlate current KDE values with the learnt KDE values using Carl Pearsons correlation coefficient method to detect data-exfiltration over the network. We present our approach, analysis and the findings based on our model. Results obtained reveal that our approach detect data-exfiltration incidents over the network.
网络环境下数据泄露检测的行为模型
在全球范围内,人们越来越关注网络上敏感数据的泄露。再加上其他内部威胁的增加,构成了更大的挑战。目前的周界安全解决方案,如入侵检测和防御系统,防火墙无法检测数据泄露。此外,现有的可以检测入侵和蠕虫的行为模型没有包含检测数据泄露的机制。设计一种基于排他性行为的模型是利用系统和网络的参数来检测网络上的数据泄露的关键。在本文中,我们提出了一种基于核密度估计(KDE)和相关协效方法的行为方法来检测数据泄漏。首先,在学习阶段,我们分析网络中的每个主机,并分别计算系统和网络参数的KDE值。其次,在检测阶段,我们计算识别参数的KDE,然后使用卡尔·皮尔逊相关系数法将当前KDE值与学习到的KDE值进行关联,以检测网络上的数据泄漏。我们介绍了我们的方法、分析和基于我们模型的发现。结果表明,我们的方法可以检测到网络上的数据泄露事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信