GPU power prediction via ensemble machine learning for DVFS space exploration

Bishwajit Dutta, Vignesh Adhinarayanan, Wu-chun Feng
{"title":"GPU power prediction via ensemble machine learning for DVFS space exploration","authors":"Bishwajit Dutta, Vignesh Adhinarayanan, Wu-chun Feng","doi":"10.1145/3203217.3203273","DOIUrl":null,"url":null,"abstract":"A software-based approach to achieve high performance within a power budget often involves dynamic voltage and frequency scaling (DVFS). Thus, accurately predicting the power consumption of an application at different DVFS levels (or more generally, different processor configurations) is paramount for the energy-efficient functioning of a high-performance computing (HPC) system. The increasing prevalence of graphics processing units (GPUs) in HPC systems presents new challenges in power management, and machine learning presents an unique way to improve the software-based power management of these systems. As such, we explore the problem of GPU power prediction at different DVFS states via machine learning. Specifically, we propose a new ensemble technique that incorporates three machine-learning techniques --- sequential minimal optimization regression, simple linear regression, and decision tree --- to reduce the mean absolute error (MAE) to 3.5%.","PeriodicalId":127096,"journal":{"name":"Proceedings of the 15th ACM International Conference on Computing Frontiers","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3203217.3203273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

A software-based approach to achieve high performance within a power budget often involves dynamic voltage and frequency scaling (DVFS). Thus, accurately predicting the power consumption of an application at different DVFS levels (or more generally, different processor configurations) is paramount for the energy-efficient functioning of a high-performance computing (HPC) system. The increasing prevalence of graphics processing units (GPUs) in HPC systems presents new challenges in power management, and machine learning presents an unique way to improve the software-based power management of these systems. As such, we explore the problem of GPU power prediction at different DVFS states via machine learning. Specifically, we propose a new ensemble technique that incorporates three machine-learning techniques --- sequential minimal optimization regression, simple linear regression, and decision tree --- to reduce the mean absolute error (MAE) to 3.5%.
基于集成机器学习的GPU功率预测用于DVFS空间探索
在功率预算范围内实现高性能的基于软件的方法通常涉及动态电压和频率缩放(DVFS)。因此,准确预测应用程序在不同DVFS级别(或者更一般地说,不同的处理器配置)下的功耗对于高性能计算(HPC)系统的节能功能至关重要。图形处理单元(gpu)在高性能计算系统中的日益普及对电源管理提出了新的挑战,机器学习为改进这些系统的基于软件的电源管理提供了一种独特的方法。因此,我们通过机器学习来探索GPU在不同DVFS状态下的功率预测问题。具体来说,我们提出了一种新的集成技术,该技术结合了三种机器学习技术——顺序最小优化回归、简单线性回归和决策树——将平均绝对误差(MAE)降低到3.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信