An efficient learning algorithm for finding multiple solutions based on fixed-point homotopy method

H. Ninomiya, C. Tomita, H. Asai
{"title":"An efficient learning algorithm for finding multiple solutions based on fixed-point homotopy method","authors":"H. Ninomiya, C. Tomita, H. Asai","doi":"10.1109/IJCNN.2005.1555985","DOIUrl":null,"url":null,"abstract":"This paper describes an efficient learning algorithm based on fixed-point homotopy method. The proposed algorithm has the ability to train the neural networks with high success rates for the initial guesses compared with other typical second-order training algorithms. Furthermore, the method proposed here not only has the widely convergent property but also find out multiple solutions. The validity of the proposed algorithm for the standard multilayer neural networks is demonstrated through the computer simulations. As a result, it is confirmed that our algorithm is efficient and practical for the learning of the multilayer feedforward neural networks.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper describes an efficient learning algorithm based on fixed-point homotopy method. The proposed algorithm has the ability to train the neural networks with high success rates for the initial guesses compared with other typical second-order training algorithms. Furthermore, the method proposed here not only has the widely convergent property but also find out multiple solutions. The validity of the proposed algorithm for the standard multilayer neural networks is demonstrated through the computer simulations. As a result, it is confirmed that our algorithm is efficient and practical for the learning of the multilayer feedforward neural networks.
基于不动点同伦法的高效多解学习算法
提出了一种基于不动点同伦法的高效学习算法。与其他典型的二阶训练算法相比,该算法具有训练神经网络初始猜测成功率高的能力。此外,所提出的方法不仅具有广泛的收敛性,而且可以找到多个解。通过计算机仿真验证了该算法对标准多层神经网络的有效性。结果表明,该算法对于多层前馈神经网络的学习是有效和实用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信