Investigation of low frequency drift in attention deficit hyperactivity disorder fMRI Signal

Jiamin Fu, Zhen Liu, Xin Gao
{"title":"Investigation of low frequency drift in attention deficit hyperactivity disorder fMRI Signal","authors":"Jiamin Fu, Zhen Liu, Xin Gao","doi":"10.1109/ICIST.2013.6747495","DOIUrl":null,"url":null,"abstract":"This paper analyzes the resting state fMRI signal of 21 ADHD subjects and 27 healthy volunteers, and proposes a novel method for extracting an effective feature in frequency domain. Utilizing this feature, the ADHD subjects and the control persons are classified with an accuracy of 95.83% by support vector machine (SVM). Furthermore, using this method, some specific brain regions such as the right amygdaloid nucleus, the left thalamus, cerebellum and vermis, with high classification accuracies, are relative to the pathological mechanism of ADHD which are consistent with the previous research results.","PeriodicalId":415759,"journal":{"name":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2013.6747495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper analyzes the resting state fMRI signal of 21 ADHD subjects and 27 healthy volunteers, and proposes a novel method for extracting an effective feature in frequency domain. Utilizing this feature, the ADHD subjects and the control persons are classified with an accuracy of 95.83% by support vector machine (SVM). Furthermore, using this method, some specific brain regions such as the right amygdaloid nucleus, the left thalamus, cerebellum and vermis, with high classification accuracies, are relative to the pathological mechanism of ADHD which are consistent with the previous research results.
注意缺陷多动障碍fMRI信号低频漂移的研究
本文分析了21名ADHD受试者和27名健康志愿者的静息状态fMRI信号,提出了一种新的频域有效特征提取方法。利用这一特征,利用支持向量机(SVM)对ADHD被试和对照组进行分类,准确率达到95.83%。此外,利用该方法,右侧杏仁核、左侧丘脑、小脑、蚓部等特定脑区与ADHD的病理机制相关,分类准确率较高,与前人的研究结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信