Generation and Load Integrated Optimal Scheduling Incorporating Distributed Energy Storage and Adjustable Load

Tao Xu, H. Hou, Qingyong Zhang, Jianjian Wang, Peng Liu, A. Tang
{"title":"Generation and Load Integrated Optimal Scheduling Incorporating Distributed Energy Storage and Adjustable Load","authors":"Tao Xu, H. Hou, Qingyong Zhang, Jianjian Wang, Peng Liu, A. Tang","doi":"10.1109/INDIN45582.2020.9442106","DOIUrl":null,"url":null,"abstract":"The rapid development of renewable energy and adjustable load has brought challenges to the safety and economic operation of power system. In this paper, we propose a generation and load integrated optimal scheduling strategy. The power generation side considers the wind-photovoltaic hybrid power system with battery energy storage system. The user side considers electric vehicles and the adjustable load such as transferable load and interruptible load to participate in scheduling. A scheduling strategy model is established to optimize both the benefits of power generation side and the user side. The multi-objective particle swarm optimization algorithm is used to solve the model. Simulation results based on historical data of a particular region (105.0° E, 35.40° N) show the feasibility of the proposed optimal scheduling strategy.","PeriodicalId":185948,"journal":{"name":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","volume":"79 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45582.2020.9442106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of renewable energy and adjustable load has brought challenges to the safety and economic operation of power system. In this paper, we propose a generation and load integrated optimal scheduling strategy. The power generation side considers the wind-photovoltaic hybrid power system with battery energy storage system. The user side considers electric vehicles and the adjustable load such as transferable load and interruptible load to participate in scheduling. A scheduling strategy model is established to optimize both the benefits of power generation side and the user side. The multi-objective particle swarm optimization algorithm is used to solve the model. Simulation results based on historical data of a particular region (105.0° E, 35.40° N) show the feasibility of the proposed optimal scheduling strategy.
分布式储能可调负荷发电负荷综合优化调度
可再生能源和可调负荷的快速发展给电力系统的安全经济运行带来了挑战。本文提出了一种发电与负荷相结合的最优调度策略。发电侧考虑采用带电池储能系统的风光电混合发电系统。用户端考虑电动汽车和可转移负荷、可中断负荷等可调节负荷参与调度。建立了发电侧和用户侧效益最优的调度策略模型。采用多目标粒子群优化算法求解该模型。基于特定区域(105.0°E, 35.40°N)历史数据的仿真结果表明了所提优化调度策略的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信