Epsilon Greedy Strategy for Hyper Parameters Tuning of A Neural Network Equalizer

Quyet D. Nguyen, Noel Teku, T. Bose
{"title":"Epsilon Greedy Strategy for Hyper Parameters Tuning of A Neural Network Equalizer","authors":"Quyet D. Nguyen, Noel Teku, T. Bose","doi":"10.1109/ISPA52656.2021.9552055","DOIUrl":null,"url":null,"abstract":"In wireless communications, equalization can be used to remove channel impairments from transmissions. Neural networks (NNs) have proven to be an effective technique against conventional equalizers (i.e. decision-feedback, zero-forcing, etc.). High Frequency (HF) channels require high-performance equalizers to overcome Doppler shifts and large delay spreads. When using a NN equalizer, tuning its structure (i.e. activation function, optimizer, etc …) can be time-consuming. This work proposes using an annealing epsilon greedy algorithm, a reinforcement learning technique, to tune the attributes of a neural network equalizer. Reinforcement learning has been used to tune NNs in different applications, but to the best of our knowledge, it has not been done for NN equalization. The objective of this work is to analyze if using reinforcement learning can improve the performance of a NN equalizer.","PeriodicalId":131088,"journal":{"name":"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA52656.2021.9552055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In wireless communications, equalization can be used to remove channel impairments from transmissions. Neural networks (NNs) have proven to be an effective technique against conventional equalizers (i.e. decision-feedback, zero-forcing, etc.). High Frequency (HF) channels require high-performance equalizers to overcome Doppler shifts and large delay spreads. When using a NN equalizer, tuning its structure (i.e. activation function, optimizer, etc …) can be time-consuming. This work proposes using an annealing epsilon greedy algorithm, a reinforcement learning technique, to tune the attributes of a neural network equalizer. Reinforcement learning has been used to tune NNs in different applications, but to the best of our knowledge, it has not been done for NN equalization. The objective of this work is to analyze if using reinforcement learning can improve the performance of a NN equalizer.
神经网络均衡器超参数整定的Epsilon贪心策略
在无线通信中,均衡可用于消除传输中的信道损害。神经网络(NNs)已被证明是对抗传统均衡器(即决策反馈,零强迫等)的有效技术。高频(HF)信道需要高性能的均衡器来克服多普勒频移和大延迟扩展。当使用神经网络均衡器时,调整其结构(即激活函数,优化器等)可能很耗时。这项工作提出使用退火epsilon贪婪算法,一种强化学习技术,来调整神经网络均衡器的属性。强化学习已经被用于在不同的应用中调整神经网络,但据我们所知,它还没有被用于神经网络均衡。这项工作的目的是分析使用强化学习是否可以提高神经网络均衡器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信