Non-parametric discriminatory power

H.J. Holz, M. Loew
{"title":"Non-parametric discriminatory power","authors":"H.J. Holz, M. Loew","doi":"10.1109/WITS.1994.513894","DOIUrl":null,"url":null,"abstract":"Discriminatory power is the relative usefulness of a feature for classification. Traditionally feature-selection techniques have defined discriminatory power in terms of a particular classifier. Non-parametric discriminately power allows feature selection to be based on the structure of the data rather than on the requirements of any one classifier. In previous research, we have defined a metric for non-parametric discriminatory power called relative feature importance (RFI). In this work, we explore the construction of RFI through closed-form analysis and experimentation. The behavior of RFI is also compared to traditional techniques.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Discriminatory power is the relative usefulness of a feature for classification. Traditionally feature-selection techniques have defined discriminatory power in terms of a particular classifier. Non-parametric discriminately power allows feature selection to be based on the structure of the data rather than on the requirements of any one classifier. In previous research, we have defined a metric for non-parametric discriminatory power called relative feature importance (RFI). In this work, we explore the construction of RFI through closed-form analysis and experimentation. The behavior of RFI is also compared to traditional techniques.
非参数歧视力
区分力是一个特征对分类的相对有用性。传统的特征选择技术根据一个特定的分类器来定义区分权。非参数判别能力允许特征选择基于数据的结构,而不是基于任何一个分类器的要求。在之前的研究中,我们定义了一个度量非参数歧视能力的指标,称为相对特征重要性(RFI)。在这项工作中,我们通过封闭形式的分析和实验来探索RFI的构建。RFI的行为也与传统技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信