Qualitative Parameter Analysis for Botrytis cinerea Forecast Modelling Using IoT Sensor Networks

N. Gligoric, Tomo Popović, D. Drajić, Spasenija Gajinov, S. Krco
{"title":"Qualitative Parameter Analysis for Botrytis cinerea Forecast Modelling Using IoT Sensor Networks","authors":"N. Gligoric, Tomo Popović, D. Drajić, Spasenija Gajinov, S. Krco","doi":"10.20944/preprints202108.0072.v1","DOIUrl":null,"url":null,"abstract":"This paper presents the evaluation of a fungal disease forecast model in vineyards for qualitative parameter analysis using the data from off the shelf sensors, i.e. temperature and air relative humidity, rain precipitation, and leaf wetness. The rules for the fungal disease models are digitalized as a decision support tool that serve as an indicator to farmers for the need of spraying of the chemical substances to ensure the best growing condition and suppress the level of parasites. The temperature and humidity contexts are used interchangeably in practice to detect the risk of the disease occurrence. By taking into account a number of influences on these parameters collected from the shelf sensors, new topics for research in the multidimensional field of precision agriculture emerge. In this study, the impact of the humidity is evaluated by assessing how different humidity parameters correlate with the accuracy of the Botrytis cinerea fungi forecast. Each humidity parameter has it’s own threshold that triggers the second step of the disease modeling - risk index based on the temperature. The research showed that for humidity a low-cost relative humidity sensor can detect in average 14.61% risk values, a leaf wetness sensor an additional 3.99% risk cases, and finally, a precipitation sensor will detect only an additional 0.59% risk cases.","PeriodicalId":384373,"journal":{"name":"Journal of Networking and Network Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Networking and Network Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202108.0072.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the evaluation of a fungal disease forecast model in vineyards for qualitative parameter analysis using the data from off the shelf sensors, i.e. temperature and air relative humidity, rain precipitation, and leaf wetness. The rules for the fungal disease models are digitalized as a decision support tool that serve as an indicator to farmers for the need of spraying of the chemical substances to ensure the best growing condition and suppress the level of parasites. The temperature and humidity contexts are used interchangeably in practice to detect the risk of the disease occurrence. By taking into account a number of influences on these parameters collected from the shelf sensors, new topics for research in the multidimensional field of precision agriculture emerge. In this study, the impact of the humidity is evaluated by assessing how different humidity parameters correlate with the accuracy of the Botrytis cinerea fungi forecast. Each humidity parameter has it’s own threshold that triggers the second step of the disease modeling - risk index based on the temperature. The research showed that for humidity a low-cost relative humidity sensor can detect in average 14.61% risk values, a leaf wetness sensor an additional 3.99% risk cases, and finally, a precipitation sensor will detect only an additional 0.59% risk cases.
基于物联网传感器网络的灰霉病预测模型的定性参数分析
本文利用现成传感器的数据,即温度和空气相对湿度、降雨量和叶片湿度,对葡萄园真菌病害预测模型进行定性参数分析。真菌疾病模型的规则被数字化,作为一种决策支持工具,作为农民喷洒化学物质以确保最佳生长条件和抑制寄生虫水平的指标。在实践中,温度和湿度环境可互换使用,以检测疾病发生的风险。通过考虑对架子传感器收集的这些参数的一些影响,在精准农业的多维领域出现了新的研究课题。在本研究中,通过评估不同湿度参数与灰葡萄孢真菌预测准确性的相关性来评估湿度的影响。每个湿度参数都有自己的阈值,触发疾病建模的第二步——基于温度的风险指数。研究表明,对于湿度,低成本的相对湿度传感器平均可检测14.61%的风险值,叶片湿度传感器可检测3.99%的风险值,而降水传感器仅可检测0.59%的风险值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信