{"title":"Phase portraits of some polynomial differential systems with maximal multiplicity of the line at the infinity","authors":"Vadim Repesco","doi":"10.36120/2587-3644.v14i2.68-80","DOIUrl":null,"url":null,"abstract":"The present study delves into the investigation of phase portraits of polynomial differential systems, which are systems of differential equations of the form $\\frac{dx}{dt} = P(x,y), \\frac{dy}{dt} = Q(x,y)$, where $x$ and $y$ are the dependent variables and $t$ is the independent variable. The functions $P(x,y)$ and $Q(x,y)$ are polynomials in $x$ and $y$. The main objective of this research is to obtain the phase portraits of polynomial differential systems of degree $n\\in \\{ 3, 4, 5\\}$ and having an invariant straight line at the infinity of maximal multiplicity.","PeriodicalId":340784,"journal":{"name":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","volume":"57 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36120/2587-3644.v14i2.68-80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present study delves into the investigation of phase portraits of polynomial differential systems, which are systems of differential equations of the form $\frac{dx}{dt} = P(x,y), \frac{dy}{dt} = Q(x,y)$, where $x$ and $y$ are the dependent variables and $t$ is the independent variable. The functions $P(x,y)$ and $Q(x,y)$ are polynomials in $x$ and $y$. The main objective of this research is to obtain the phase portraits of polynomial differential systems of degree $n\in \{ 3, 4, 5\}$ and having an invariant straight line at the infinity of maximal multiplicity.