Phase portraits of some polynomial differential systems with maximal multiplicity of the line at the infinity

Vadim Repesco
{"title":"Phase portraits of some polynomial differential systems with maximal multiplicity of the line at the infinity","authors":"Vadim Repesco","doi":"10.36120/2587-3644.v14i2.68-80","DOIUrl":null,"url":null,"abstract":"The present study delves into the investigation of phase portraits of polynomial differential systems, which are systems of differential equations of the form $\\frac{dx}{dt} = P(x,y), \\frac{dy}{dt} = Q(x,y)$, where $x$ and $y$ are the dependent variables and $t$ is the independent variable. The functions $P(x,y)$ and $Q(x,y)$ are polynomials in $x$ and $y$. The main objective of this research is to obtain the phase portraits of polynomial differential systems of degree $n\\in \\{ 3, 4, 5\\}$ and having an invariant straight line at the infinity of maximal multiplicity.","PeriodicalId":340784,"journal":{"name":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","volume":"57 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36120/2587-3644.v14i2.68-80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study delves into the investigation of phase portraits of polynomial differential systems, which are systems of differential equations of the form $\frac{dx}{dt} = P(x,y), \frac{dy}{dt} = Q(x,y)$, where $x$ and $y$ are the dependent variables and $t$ is the independent variable. The functions $P(x,y)$ and $Q(x,y)$ are polynomials in $x$ and $y$. The main objective of this research is to obtain the phase portraits of polynomial differential systems of degree $n\in \{ 3, 4, 5\}$ and having an invariant straight line at the infinity of maximal multiplicity.
一些多项式微分系统在无穷远处具有极大的直线多重性的相图
本文研究了多项式微分系统的相图,即$\frac{dx}{dt} = P(x,y), $ frac{dy}{dt} = Q(x,y)$的微分方程组,其中$x$和$y$为因变量,$t$为自变量。函数$P(x,y)$和$Q(x,y)$是$x$和$y$中的多项式。本研究的主要目的是得到次为$n\in \{3,4,5 \}$且在无穷远处具有最大多重性的不变直线的多项式微分系统的相图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信