Multi-metric clusterhead selection using classification in wireless sensor networks

Parinaz Eskandarian, J. Bagherzadeh
{"title":"Multi-metric clusterhead selection using classification in wireless sensor networks","authors":"Parinaz Eskandarian, J. Bagherzadeh","doi":"10.1109/IKT.2015.7288769","DOIUrl":null,"url":null,"abstract":"Multi-metric clusterhead selection is a multidimensional problem in wireless networks whose optimum solution cannot be found in real time. In this paper, we design an approximation algorithm called MMCSC for this problem using SOM classification techniques. SOM (Self Organizing Map) converts the multidimensional problem into a one-dimensional problem, thus makes it fast to solve. MMCSC considers multiple metrics in clusterhead selection including remaining energy, number of neighbors, and distance to sink. Our evaluations show that MMCSC surpasses the existing algorithms in terms of shorter execution duration, higher remaining energy of clusterheads, and achieving unequal clustering.","PeriodicalId":338953,"journal":{"name":"2015 7th Conference on Information and Knowledge Technology (IKT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT.2015.7288769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-metric clusterhead selection is a multidimensional problem in wireless networks whose optimum solution cannot be found in real time. In this paper, we design an approximation algorithm called MMCSC for this problem using SOM classification techniques. SOM (Self Organizing Map) converts the multidimensional problem into a one-dimensional problem, thus makes it fast to solve. MMCSC considers multiple metrics in clusterhead selection including remaining energy, number of neighbors, and distance to sink. Our evaluations show that MMCSC surpasses the existing algorithms in terms of shorter execution duration, higher remaining energy of clusterheads, and achieving unequal clustering.
无线传感器网络中基于分类的多度量簇头选择
多度量簇头选择是无线网络中一个无法实时找到最优解的多维问题。在本文中,我们使用SOM分类技术设计了一个称为MMCSC的近似算法来解决这个问题。SOM(自组织映射)将多维问题转化为一维问题,从而使其快速求解。MMCSC在簇头选择中考虑多个指标,包括剩余能量、邻居数量和汇聚距离。我们的评估表明,MMCSC在更短的执行时间、更高的簇头剩余能量和实现不均匀聚类方面优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信