Beyond the Input Stream: Making Text Entry Evaluations More Flexible with Transcription Sequences

M. Zhang, J. Wobbrock
{"title":"Beyond the Input Stream: Making Text Entry Evaluations More Flexible with Transcription Sequences","authors":"M. Zhang, J. Wobbrock","doi":"10.1145/3332165.3347922","DOIUrl":null,"url":null,"abstract":"Method-independent text entry evaluation tools are often used to conduct text entry experiments and compute performance metrics, like words per minute and error rates. The input stream paradigm of Soukoreff & MacKenzie (2001, 2003) still remains prevalent, which presents a string for transcription and uses a strictly serial character representation for encoding the text entry process. Although an advance over prior paradigms, the input stream paradigm is unable to support many modern text entry features. To address these limitations, we present transcription sequences: for each new input, a snapshot of the entire transcribed string unto that point is captured. By comparing adjacent strings within a transcription sequence, we can compute all prior metrics, reduce artificial constraints on text entry evaluations, and introduce new metrics. We conducted a study with 18 participants who typed 1620 phrases using a laptop keyboard, on-screen keyboard, and smartphone keyboard using features such as auto-correction, word prediction, and copy/paste. We also evaluated non-keyboard methods Dasher, gesture typing, and T9. Our results show that modern text entry methods and features can be accommodated, prior metrics can be correctly computed, and new metrics can reveal insights. We validated our algorithms using ground truth based on cursor positioning, confirming 100% accuracy. We also provide a new tool, TextTest++, to facilitate web-based evaluations.","PeriodicalId":431403,"journal":{"name":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3332165.3347922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Method-independent text entry evaluation tools are often used to conduct text entry experiments and compute performance metrics, like words per minute and error rates. The input stream paradigm of Soukoreff & MacKenzie (2001, 2003) still remains prevalent, which presents a string for transcription and uses a strictly serial character representation for encoding the text entry process. Although an advance over prior paradigms, the input stream paradigm is unable to support many modern text entry features. To address these limitations, we present transcription sequences: for each new input, a snapshot of the entire transcribed string unto that point is captured. By comparing adjacent strings within a transcription sequence, we can compute all prior metrics, reduce artificial constraints on text entry evaluations, and introduce new metrics. We conducted a study with 18 participants who typed 1620 phrases using a laptop keyboard, on-screen keyboard, and smartphone keyboard using features such as auto-correction, word prediction, and copy/paste. We also evaluated non-keyboard methods Dasher, gesture typing, and T9. Our results show that modern text entry methods and features can be accommodated, prior metrics can be correctly computed, and new metrics can reveal insights. We validated our algorithms using ground truth based on cursor positioning, confirming 100% accuracy. We also provide a new tool, TextTest++, to facilitate web-based evaluations.
超越输入流:使文本输入评估更灵活的转录序列
独立于方法的文本输入评估工具通常用于执行文本输入实验和计算性能指标,如每分钟字数和错误率。Soukoreff和MacKenzie(2001,2003)的输入流范式仍然很流行,它提供了一个用于转录的字符串,并使用严格的串行字符表示来编码文本输入过程。尽管输入流范式比先前的范式有了进步,但它无法支持许多现代文本输入特性。为了解决这些限制,我们提出了转录序列:对于每个新输入,捕获到该点的整个转录字符串的快照。通过比较转录序列中的相邻字符串,我们可以计算所有先前的度量,减少对文本输入评估的人为约束,并引入新的度量。我们对18名参与者进行了一项研究,他们使用笔记本电脑键盘、屏幕键盘和智能手机键盘输入1620个短语,并使用自动更正、单词预测和复制/粘贴等功能。我们还评估了非键盘方法Dasher、手势输入和T9。我们的结果表明,可以适应现代文本输入方法和特征,可以正确计算先前的度量,并且新的度量可以揭示见解。我们使用基于光标定位的地面事实验证了我们的算法,确认了100%的准确性。我们还提供了一个新工具TextTest++,以促进基于web的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信