Parameterized Max Min Feedback Vertex Set

M. Lampis, N. Melissinos, Manolis Vasilakis
{"title":"Parameterized Max Min Feedback Vertex Set","authors":"M. Lampis, N. Melissinos, Manolis Vasilakis","doi":"10.48550/arXiv.2302.09604","DOIUrl":null,"url":null,"abstract":"Given a graph $G$ and an integer $k$, Max Min FVS asks whether there exists a minimal set of vertices of size at least $k$ whose deletion destroys all cycles. We present several results that improve upon the state of the art of the parameterized complexity of this problem with respect to both structural and natural parameters. Using standard DP techniques, we first present an algorithm of time $\\textrm{tw}^{O(\\textrm{tw})}n^{O(1)}$, significantly generalizing a recent algorithm of Gaikwad et al. of time $\\textrm{vc}^{O(\\textrm{vc})}n^{O(1)}$, where $\\textrm{tw}, \\textrm{vc}$ denote the input graph's treewidth and vertex cover respectively. Subsequently, we show that both of these algorithms are essentially optimal, since a $\\textrm{vc}^{o(\\textrm{vc})}n^{O(1)}$ algorithm would refute the ETH. With respect to the natural parameter $k$, the aforementioned recent work by Gaikwad et al. claimed an FPT branching algorithm with complexity $10^k n^{O(1)}$. We point out that this algorithm is incorrect and present a branching algorithm of complexity $9.34^k n^{O(1)}$.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.09604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Given a graph $G$ and an integer $k$, Max Min FVS asks whether there exists a minimal set of vertices of size at least $k$ whose deletion destroys all cycles. We present several results that improve upon the state of the art of the parameterized complexity of this problem with respect to both structural and natural parameters. Using standard DP techniques, we first present an algorithm of time $\textrm{tw}^{O(\textrm{tw})}n^{O(1)}$, significantly generalizing a recent algorithm of Gaikwad et al. of time $\textrm{vc}^{O(\textrm{vc})}n^{O(1)}$, where $\textrm{tw}, \textrm{vc}$ denote the input graph's treewidth and vertex cover respectively. Subsequently, we show that both of these algorithms are essentially optimal, since a $\textrm{vc}^{o(\textrm{vc})}n^{O(1)}$ algorithm would refute the ETH. With respect to the natural parameter $k$, the aforementioned recent work by Gaikwad et al. claimed an FPT branching algorithm with complexity $10^k n^{O(1)}$. We point out that this algorithm is incorrect and present a branching algorithm of complexity $9.34^k n^{O(1)}$.
参数化的最大最小反馈顶点集
给定一个图$G$和一个整数$k$, Max Min FVS问是否存在一个最小的顶点集,其大小至少为$k$,其删除会破坏所有循环。我们提出了几个结果,这些结果改进了该问题在结构参数和自然参数方面的参数化复杂性的最新状态。使用标准DP技术,我们首先提出了时间$\textrm{tw}^{O(\textrm{tw})}n^{O(1)}$的算法,显著推广了Gaikwad等人最近的时间$\textrm{vc}^{O(\textrm{vc})}n^{O(1)}$的算法,其中$\textrm{tw}, \textrm{vc}$分别表示输入图的树宽和顶点覆盖。随后,我们证明这两种算法本质上都是最优的,因为$\textrm{vc}^{o(\textrm{vc})}n^{o(1)}$算法会反驳ETH。对于自然参数$k$,前面提到的Gaikwad等人提出了一个复杂度$10^k n^{O(1)}$的FPT分支算法。我们指出了该算法的不正确,并给出了复杂度为$9.34^k n^{O(1)}$的分支算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信