Data-driven Design of Context-aware Monitors for Hazard Prediction in Artificial Pancreas Systems

Xugui Zhou, Bulbul Ahmed, J. Aylor, Philip Asare, H. Alemzadeh
{"title":"Data-driven Design of Context-aware Monitors for Hazard Prediction in Artificial Pancreas Systems","authors":"Xugui Zhou, Bulbul Ahmed, J. Aylor, Philip Asare, H. Alemzadeh","doi":"10.1109/DSN48987.2021.00058","DOIUrl":null,"url":null,"abstract":"Medical Cyber-physical Systems (MCPS) are vulnerable to accidental or malicious faults that can target their controllers and cause safety hazards and harm to patients. This paper proposes a combined model and data-driven approach for designing context-aware monitors that can detect early signs of hazards and mitigate them in MCPS. We present a framework for formal specification of unsafe system context using Signal Temporal Logic (STL) combined with an optimization method for patient-specific refinement of STL formulas based on real or simulated faulty data from the closed-loop system for the generation of monitor logic. We evaluate our approach in simulation using two state-of-the-art closed-loop Artificial Pancreas Systems (APS). The results show the context-aware monitor achieves up to 1.4 times increase in average hazard prediction accuracy (F1score) over several baseline monitors, reduces false-positive and false-negative rates, and enables hazard mitigation with a 54% success rate while decreasing the average risk for patients.","PeriodicalId":222512,"journal":{"name":"2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN48987.2021.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Medical Cyber-physical Systems (MCPS) are vulnerable to accidental or malicious faults that can target their controllers and cause safety hazards and harm to patients. This paper proposes a combined model and data-driven approach for designing context-aware monitors that can detect early signs of hazards and mitigate them in MCPS. We present a framework for formal specification of unsafe system context using Signal Temporal Logic (STL) combined with an optimization method for patient-specific refinement of STL formulas based on real or simulated faulty data from the closed-loop system for the generation of monitor logic. We evaluate our approach in simulation using two state-of-the-art closed-loop Artificial Pancreas Systems (APS). The results show the context-aware monitor achieves up to 1.4 times increase in average hazard prediction accuracy (F1score) over several baseline monitors, reduces false-positive and false-negative rates, and enables hazard mitigation with a 54% success rate while decreasing the average risk for patients.
人工胰腺系统危害预测环境感知监测的数据驱动设计
医疗信息物理系统(MCPS)容易受到意外或恶意故障的攻击,这些故障可以针对其控制器并造成安全隐患和对患者的伤害。本文提出了一种结合模型和数据驱动的方法来设计上下文感知监视器,该监视器可以在MCPS中检测到危险的早期迹象并减轻它们。我们提出了一个使用信号时间逻辑(STL)的不安全系统上下文的正式规范框架,并结合了基于来自闭环系统的真实或模拟故障数据的特定患者细化STL公式的优化方法,用于生成监控逻辑。我们使用两个最先进的闭环人工胰腺系统(APS)在模拟中评估我们的方法。结果显示,情境感知监测器的平均危害预测准确率(F1score)比几个基线监测器提高了1.4倍,降低了假阳性和假阴性率,并在降低患者平均风险的同时,实现了54%的危害缓解成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信