Channel estimation for double IRS assisted broadband single-user SISO communication

Vishnu Karthikeya Gorty
{"title":"Channel estimation for double IRS assisted broadband single-user SISO communication","authors":"Vishnu Karthikeya Gorty","doi":"10.1109/SPCOM55316.2022.9840513","DOIUrl":null,"url":null,"abstract":"In this paper, two Intelligent reflecting surfaces (double IRS) assisted single-user single input single output (SISO) communication system is considered. The cascaded channels (mobile user (MU) $\\rightarrow$ IRS$- 1 \\rightarrow$ base station (BS), MU $\\rightarrow$ IRS$- 2 \\rightarrow$ BS and MU $\\rightarrow$ IRS$- 1 \\rightarrow$ IRS$- 2 \\rightarrow$ BS channels) are estimated under Bayesian setting. Here, the goal is to evaluate the performance of the estimator in case of MU $\\rightarrow$ IRS$- 1 \\rightarrow$ BS and MU $\\rightarrow$ IRS$- 2 \\rightarrow$ BS channel links using Bayesian Cramér-Rao lower bound (CRLB). Without the knowledge of closed form pdf of inner product of circularly symmetric complex Gaussian (CSCG) random vectors, we cannot obtain the fisher information. Hence, by numerical computation we obtain the Bayesian CRLB. In the simulation results, we show that we can approximate the pdf of the inner product of CSCG random vectors by a Rayleigh distribution by increasing the number of elements on the IRS, which is analogous to Central Limit Theorem (CLT). Also, the results convey that the mean squared error (MSE) almost matches with the Bayesian CRLB.","PeriodicalId":246982,"journal":{"name":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM55316.2022.9840513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, two Intelligent reflecting surfaces (double IRS) assisted single-user single input single output (SISO) communication system is considered. The cascaded channels (mobile user (MU) $\rightarrow$ IRS$- 1 \rightarrow$ base station (BS), MU $\rightarrow$ IRS$- 2 \rightarrow$ BS and MU $\rightarrow$ IRS$- 1 \rightarrow$ IRS$- 2 \rightarrow$ BS channels) are estimated under Bayesian setting. Here, the goal is to evaluate the performance of the estimator in case of MU $\rightarrow$ IRS$- 1 \rightarrow$ BS and MU $\rightarrow$ IRS$- 2 \rightarrow$ BS channel links using Bayesian Cramér-Rao lower bound (CRLB). Without the knowledge of closed form pdf of inner product of circularly symmetric complex Gaussian (CSCG) random vectors, we cannot obtain the fisher information. Hence, by numerical computation we obtain the Bayesian CRLB. In the simulation results, we show that we can approximate the pdf of the inner product of CSCG random vectors by a Rayleigh distribution by increasing the number of elements on the IRS, which is analogous to Central Limit Theorem (CLT). Also, the results convey that the mean squared error (MSE) almost matches with the Bayesian CRLB.
双IRS辅助宽带单用户SISO通信的信道估计
研究了双智能反射面(双IRS)辅助单用户单输入单输出(SISO)通信系统。在贝叶斯设置下估计了级联信道(移动用户(MU) $\rightarrow$ IRS$- 1 \rightarrow$基站(BS)、MU $\rightarrow$ IRS$- 2 \rightarrow$ BS和MU $\rightarrow$ IRS$- 1 \rightarrow$ IRS$- 2 \rightarrow$ BS信道)。在这里,目标是使用贝叶斯cram - rao下界(CRLB)来评估MU $\rightarrow$ IRS$- 1 \rightarrow$ BS和MU $\rightarrow$ IRS$- 2 \rightarrow$ BS信道链接情况下估计器的性能。如果不知道圆对称复高斯(CSCG)随机向量内积的封闭形式pdf,就无法获得fisher信息。因此,通过数值计算,我们得到了贝叶斯CRLB。仿真结果表明,通过增加IRS上的元素个数,可以近似地得到CSCG随机向量内积的pdf,这与中心极限定理(CLT)类似。此外,结果表明,均方误差(MSE)与贝叶斯CRLB基本匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信