Information extraction from clinical records: an example for breast cancer*

I. Lazić, N. Jakovljević, J. Boban, I. Nosek, T. Lončar-Turukalo
{"title":"Information extraction from clinical records: an example for breast cancer*","authors":"I. Lazić, N. Jakovljević, J. Boban, I. Nosek, T. Lončar-Turukalo","doi":"10.1109/MELECON53508.2022.9842995","DOIUrl":null,"url":null,"abstract":"The extraction of relevant information from electronic health records (EHR) can facilitate large scale clinical studies related to certain diseases to uncover diversity of their biological and clinical signatures, and patterns of treatment and prognosis. Variety of EHR formats and use of clinical narrative present significant challenges to this task. In this work we describe a process of an automated information extraction from an oncology hospital clinical reports related to 2966 subjects with suspected or confirmed breast cancer. The lack of open medical term dictionaries for the Serbian language and the variety of clinical data types required, imply the use of rule-based approaches with exact matches, regular expressions, hierarchical rules and customized mini dictionaries to analyze clinical text. The accuracy of the applied approach has been validated on manually extracted clinical data of 50 breast cancer patients. The accuracy varied, field dependent, between 71.3% to 100%, indicating that certain relevant fields can be successfully captured, yet implying the need for sophisticated natural language processing tools for accurate extraction of more descriptive features.","PeriodicalId":303656,"journal":{"name":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELECON53508.2022.9842995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The extraction of relevant information from electronic health records (EHR) can facilitate large scale clinical studies related to certain diseases to uncover diversity of their biological and clinical signatures, and patterns of treatment and prognosis. Variety of EHR formats and use of clinical narrative present significant challenges to this task. In this work we describe a process of an automated information extraction from an oncology hospital clinical reports related to 2966 subjects with suspected or confirmed breast cancer. The lack of open medical term dictionaries for the Serbian language and the variety of clinical data types required, imply the use of rule-based approaches with exact matches, regular expressions, hierarchical rules and customized mini dictionaries to analyze clinical text. The accuracy of the applied approach has been validated on manually extracted clinical data of 50 breast cancer patients. The accuracy varied, field dependent, between 71.3% to 100%, indicating that certain relevant fields can be successfully captured, yet implying the need for sophisticated natural language processing tools for accurate extraction of more descriptive features.
从临床记录中提取信息:以乳腺癌为例*
从电子健康记录(EHR)中提取相关信息可以促进与某些疾病相关的大规模临床研究,以揭示其生物学和临床特征的多样性,以及治疗和预后模式。各种电子病历格式和临床叙述的使用对这项任务提出了重大挑战。在这项工作中,我们描述了从一家肿瘤医院2966名疑似或确诊乳腺癌患者的临床报告中自动提取信息的过程。由于缺乏塞尔维亚语的开放医学术语词典和所需的各种临床数据类型,因此需要使用基于规则的方法,包括精确匹配、正则表达式、分层规则和定制的迷你词典来分析临床文本。人工提取的50例乳腺癌患者临床数据验证了该方法的准确性。准确度因领域而异,在71.3%到100%之间,这表明某些相关领域可以被成功捕获,但也意味着需要复杂的自然语言处理工具来准确提取更多描述性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信