An enhanced appearance model for ultrasound image segmentation

Yifeng Jiang, Zhijun Zhang, F. Cen, H. Tsui, Tze Kin Lau
{"title":"An enhanced appearance model for ultrasound image segmentation","authors":"Yifeng Jiang, Zhijun Zhang, F. Cen, H. Tsui, Tze Kin Lau","doi":"10.1109/ICPR.2004.160","DOIUrl":null,"url":null,"abstract":"Active appearance model (AAM) had been popular on object segmentation for medical images. However, its performance is not good on ultrasound (US) images. In this paper, we propose an enhanced appearance model which represents the texture by edge structure and reduces the view-dependent feature of US images by a novel data normalization process. In our experiments on general US data, the proposed model shows considerable improvements compared to the original one.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Active appearance model (AAM) had been popular on object segmentation for medical images. However, its performance is not good on ultrasound (US) images. In this paper, we propose an enhanced appearance model which represents the texture by edge structure and reduces the view-dependent feature of US images by a novel data normalization process. In our experiments on general US data, the proposed model shows considerable improvements compared to the original one.
超声图像分割的增强外观模型
主动外观模型(AAM)在医学图像的目标分割中得到了广泛的应用。然而,它在超声(US)图像上的表现并不好。在本文中,我们提出了一种增强的外观模型,该模型通过边缘结构来表示纹理,并通过一种新的数据归一化过程来降低美国图像的视图依赖特征。在我们对美国一般数据的实验中,与原始模型相比,提出的模型显示出相当大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信