An Efficient Method for Aerodynamic Shape Optimization

S. Hazra
{"title":"An Efficient Method for Aerodynamic Shape Optimization","authors":"S. Hazra","doi":"10.2514/6.2004-4628","DOIUrl":null,"url":null,"abstract":"We present simultaneous pseudo-timestepping as an efficient method for aerodynamic shape optimization. In this method, instead of solving the necessary optimality conditions by iterative techniques, pseudo-time embedded nonstationary system is integrated in time until a steady state is reached. The main advantages of this method are that it requires no additional globalization techniques and that a preconditioner can be used for convergence acceleration which stems from the reduced SQP method. The important issue of this method is the trade-off between the accuracy of the forward and adjoint solver and its impact on the computational cost to approach an optimum solution is addressed. The method is applied to a test case of drag reduction for an RAE2822 airfoil, keeping it’s thickness constant. The optimum overall cost of computation that is achieved in this method is less than 4 times that of the forward simulation run. Nomenclature (x, y) ∈ R :cartesian coordinates H :total enthalpy (ξ, η) ∈ [0, 1] :generalized coordinates M :Mach number Ω :flow field domain )∞ :values at free stream ∂Ω :flow field boundary γ :ratio of specific heats ~n := ( nx ny ) :unit outward normal Cref :chord length α :angle of attack CD :drag coefficient ρ :density I :cost unction u :x-component of velocity w :vector of state variables v :y-component of velocity q :vector of design variables p :pressure λ :vector of adjoint variables E :total energy J :Jacobian Cp :pressure coefficient B :reduced Hessian","PeriodicalId":142744,"journal":{"name":"Universität Trier, Mathematik/Informatik, Forschungsbericht","volume":"12 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universität Trier, Mathematik/Informatik, Forschungsbericht","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2004-4628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We present simultaneous pseudo-timestepping as an efficient method for aerodynamic shape optimization. In this method, instead of solving the necessary optimality conditions by iterative techniques, pseudo-time embedded nonstationary system is integrated in time until a steady state is reached. The main advantages of this method are that it requires no additional globalization techniques and that a preconditioner can be used for convergence acceleration which stems from the reduced SQP method. The important issue of this method is the trade-off between the accuracy of the forward and adjoint solver and its impact on the computational cost to approach an optimum solution is addressed. The method is applied to a test case of drag reduction for an RAE2822 airfoil, keeping it’s thickness constant. The optimum overall cost of computation that is achieved in this method is less than 4 times that of the forward simulation run. Nomenclature (x, y) ∈ R :cartesian coordinates H :total enthalpy (ξ, η) ∈ [0, 1] :generalized coordinates M :Mach number Ω :flow field domain )∞ :values at free stream ∂Ω :flow field boundary γ :ratio of specific heats ~n := ( nx ny ) :unit outward normal Cref :chord length α :angle of attack CD :drag coefficient ρ :density I :cost unction u :x-component of velocity w :vector of state variables v :y-component of velocity q :vector of design variables p :pressure λ :vector of adjoint variables E :total energy J :Jacobian Cp :pressure coefficient B :reduced Hessian
一种有效的气动外形优化方法
同时伪时间步进是一种有效的气动形状优化方法。在这种方法中,伪时间嵌入的非平稳系统不是通过迭代技术来求解必要的最优性条件,而是在时间上进行积分,直到达到稳态。该方法的主要优点是不需要额外的全球化技术,并且可以使用前置条件来加速收敛,这源于简化的SQP方法。该方法的重要问题是在正演和伴随求解器的精度及其对接近最优解的计算成本的影响之间进行权衡。该方法应用于RAE2822翼型减阻试验案例,保持其厚度不变。该方法实现的最佳总体计算成本小于正向模拟运行的4倍。命名法(x, y)∈R:笛卡尔坐标H:总焓(ξ, η)∈[0,1):广义坐标M:马赫数Ω:流场域)∞:值在自由流∂Ω:流场边界γ:比热比~ n: = (nx ny):单位外法线Cref:弦长α:攻角CD:阻力系数ρ:密度我:成本津津有味u: x分量速度w:向量的状态变量v:速度分量问:向量的设计变量p:压力λ:伴随变量的向量E:总能量J:雅可比矩阵Cp:压力系数B:减少黑森
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信