{"title":"Unified continuous- and discrete-time uplink power control problem formulation for SIR-based wireless networks","authors":"W. Su, Bo-Hwan Jung, Sheng-Yueh Chang, Z. Gajic","doi":"10.1109/SARNOF.2009.4850295","DOIUrl":null,"url":null,"abstract":"The nonlinear, multiplicative form of the signal-to-interference ratio (SIR) function can be put in the linear, additive form by representing the SIR function in the logarithmic scale. Most of the well-known discrete-time power control algorithms can be reformulated into simple continuous-time dynamic equations in the logarithmic scale. A ‘surrogate derivative’ model yields the continuous-time system dynamics for each local user. It reveals that many of the most popular and powerful existing power control update laws can actually be comprehended as the discrete-time versions of the standard continuous-time control strategies. The continuous-time dynamic system formulation provides a new avenue to the uplink power control designs for wireless networks such that many existing useful control methodologies can be directly employed for solving the SIR-based wireless communication power control problems. Yates' power convergence conditions for the distributed power control (DPC), originally given for the discrete-time power control updates, are also presented in the continuous-time framework in this paper. We have shown that CDMA 2000 (IS-95) standard for mobile power updates uses a sliding mode control technique, and that the DPC algorithm is based on a linear state feedback control law.","PeriodicalId":230233,"journal":{"name":"2009 IEEE Sarnoff Symposium","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Sarnoff Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SARNOF.2009.4850295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The nonlinear, multiplicative form of the signal-to-interference ratio (SIR) function can be put in the linear, additive form by representing the SIR function in the logarithmic scale. Most of the well-known discrete-time power control algorithms can be reformulated into simple continuous-time dynamic equations in the logarithmic scale. A ‘surrogate derivative’ model yields the continuous-time system dynamics for each local user. It reveals that many of the most popular and powerful existing power control update laws can actually be comprehended as the discrete-time versions of the standard continuous-time control strategies. The continuous-time dynamic system formulation provides a new avenue to the uplink power control designs for wireless networks such that many existing useful control methodologies can be directly employed for solving the SIR-based wireless communication power control problems. Yates' power convergence conditions for the distributed power control (DPC), originally given for the discrete-time power control updates, are also presented in the continuous-time framework in this paper. We have shown that CDMA 2000 (IS-95) standard for mobile power updates uses a sliding mode control technique, and that the DPC algorithm is based on a linear state feedback control law.