Distributed Multirobot Formation and Tracking Control in Cluttered Environments

Muhammad Umer Khan, Shuai Li, Qixin Wang, Z. Shao
{"title":"Distributed Multirobot Formation and Tracking Control in Cluttered Environments","authors":"Muhammad Umer Khan, Shuai Li, Qixin Wang, Z. Shao","doi":"10.1145/2910584","DOIUrl":null,"url":null,"abstract":"In this article, we propose formation control of nonholonomic mobile robots avoiding obstacles in a distributed manner for cluttered environments. The introduction of a virtual robot restructures the formation control problem into a tracking control problem between the virtual reference robot and follower robots. A novel obstacle avoidance approach is proposed based upon the scaling of whole (partial) formation corresponding to a centralized (distributed) framework. For the distributed environment with limited communication, our approach utilized proportional-integral average consensus estimators, whereby information from each robot diffuses through the communication network. The theoretical contribution is to determine the time constant involved in the diffusion process, which can affect overall system performance. The asymptotic convergence of follower robots to the position and orientation of the reference robot is ensured using the Lyapunov function. The new technique is tested with complete, limited, and no information availability. Several simulation results are provided that demonstrate the formation control and obstacle avoidance for multirobots using the proposed scheme.","PeriodicalId":377078,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","volume":"37 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2910584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In this article, we propose formation control of nonholonomic mobile robots avoiding obstacles in a distributed manner for cluttered environments. The introduction of a virtual robot restructures the formation control problem into a tracking control problem between the virtual reference robot and follower robots. A novel obstacle avoidance approach is proposed based upon the scaling of whole (partial) formation corresponding to a centralized (distributed) framework. For the distributed environment with limited communication, our approach utilized proportional-integral average consensus estimators, whereby information from each robot diffuses through the communication network. The theoretical contribution is to determine the time constant involved in the diffusion process, which can affect overall system performance. The asymptotic convergence of follower robots to the position and orientation of the reference robot is ensured using the Lyapunov function. The new technique is tested with complete, limited, and no information availability. Several simulation results are provided that demonstrate the formation control and obstacle avoidance for multirobots using the proposed scheme.
混乱环境下的分布式多机器人编队与跟踪控制
在本文中,我们提出了非完整移动机器人在混乱环境中以分布式方式避障的编队控制。虚拟机器人的引入将编队控制问题重构为虚拟参考机器人与跟随机器人之间的跟踪控制问题。提出了一种新的避障方法,该方法基于与集中式(分布式)框架相对应的整体(部分)编队尺度。对于通信有限的分布式环境,我们的方法利用比例积分平均共识估计器,其中每个机器人的信息通过通信网络扩散。理论贡献是确定扩散过程中涉及的时间常数,它可以影响系统的整体性能。利用李雅普诺夫函数保证了跟随机器人对参考机器人位置和姿态的渐近收敛。新技术在完全、有限和无信息可用性的情况下进行了测试。仿真结果验证了该方案对多机器人的编队控制和避障性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信