RESTful Hardware Microservices Using Reconfigurable Networked Accelerators in Cloud and Edge Datacenters

Mazen Ezzeddine, Raghid Morcel, H. Artail, M. Saghir, Haitham Akkary, Hazem M. Hajj
{"title":"RESTful Hardware Microservices Using Reconfigurable Networked Accelerators in Cloud and Edge Datacenters","authors":"Mazen Ezzeddine, Raghid Morcel, H. Artail, M. Saghir, Haitham Akkary, Hazem M. Hajj","doi":"10.1109/CloudNet.2018.8549544","DOIUrl":null,"url":null,"abstract":"We propose enabling cloud datacenters with Reconfigurable Networked Accelerators RNAs. RNAs are FPGA and memory compute nodes connected to the main network of the datacenter. To enable seamless integration of RNAs, we propose RESTful hardware microservices in cloud datacenters. We show how a front-end model view controller (MVC) web application can issue a call to remote RNA-accelerated RESTful microservices to decrease the latency of a single client query and increase the throughput of clients served. As a use case, we investigate just in time classification of client uploaded media (e.g., images, videos, etc.) against adult or hateful content. The system architecture is implemented using Spring MVC (Spring Boot) and AlexNet convolutional neural network CNN for image classification. Observed results show up to more than 10x improvements in throughput and energy efficiency depending on the target RNA (FPGA) device and the level of optimization of the employed hardware classifier.","PeriodicalId":436842,"journal":{"name":"2018 IEEE 7th International Conference on Cloud Networking (CloudNet)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet.2018.8549544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose enabling cloud datacenters with Reconfigurable Networked Accelerators RNAs. RNAs are FPGA and memory compute nodes connected to the main network of the datacenter. To enable seamless integration of RNAs, we propose RESTful hardware microservices in cloud datacenters. We show how a front-end model view controller (MVC) web application can issue a call to remote RNA-accelerated RESTful microservices to decrease the latency of a single client query and increase the throughput of clients served. As a use case, we investigate just in time classification of client uploaded media (e.g., images, videos, etc.) against adult or hateful content. The system architecture is implemented using Spring MVC (Spring Boot) and AlexNet convolutional neural network CNN for image classification. Observed results show up to more than 10x improvements in throughput and energy efficiency depending on the target RNA (FPGA) device and the level of optimization of the employed hardware classifier.
在云和边缘数据中心中使用可重构网络加速器的RESTful硬件微服务
我们建议启用云数据中心与可重构网络加速器rna。RNAs是连接到数据中心主网络的FPGA和内存计算节点。为了实现rna的无缝集成,我们在云数据中心中提出了RESTful硬件微服务。我们展示了前端模型视图控制器(MVC) web应用程序如何发出对远程rna加速RESTful微服务的调用,以减少单个客户端查询的延迟并增加所服务客户端的吞吐量。作为一个用例,我们调查了客户端上传的媒体(例如,图像,视频等)对成人或仇恨内容的及时分类。系统架构使用Spring MVC (Spring Boot)和AlexNet卷积神经网络CNN进行图像分类。观察到的结果显示,根据目标RNA (FPGA)设备和所使用的硬件分类器的优化水平,吞吐量和能源效率提高了10倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信