Motivated self-organization

N. Rougier, Y. Boniface
{"title":"Motivated self-organization","authors":"N. Rougier, Y. Boniface","doi":"10.1109/WSOM.2017.8020000","DOIUrl":null,"url":null,"abstract":"We present in this paper a variation of the self-organizing map algorithm where the original time-dependent (learning rate and neighborhood) learning function is replaced by a time-invariant one. The resulting self-organization does not fit the magnification law and the final vector density is not directly proportional to the density of the distribution. This lead us to introduce the notion of motivated self-organization where the self-organization is biased toward some data thanks to a supplementary signal. From a behavioral point of view, this signal may be understood as a motivational signal allowing a finer tuning of the final self-organization where needed. We illustrate this behavior through a simple robotic arm setup. Open access version of this article is available at https://hal.inria.fr/hal-01513519.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present in this paper a variation of the self-organizing map algorithm where the original time-dependent (learning rate and neighborhood) learning function is replaced by a time-invariant one. The resulting self-organization does not fit the magnification law and the final vector density is not directly proportional to the density of the distribution. This lead us to introduce the notion of motivated self-organization where the self-organization is biased toward some data thanks to a supplementary signal. From a behavioral point of view, this signal may be understood as a motivational signal allowing a finer tuning of the final self-organization where needed. We illustrate this behavior through a simple robotic arm setup. Open access version of this article is available at https://hal.inria.fr/hal-01513519.
动机的自我组织
本文提出了一种自组织映射算法的变体,将原始的时变(学习率和邻域)学习函数替换为时不变的学习函数。由此产生的自组织不符合放大定律,最终矢量密度与分布密度不成正比。这导致我们引入了激励自组织的概念,其中自组织由于补充信号而偏向于某些数据。从行为的角度来看,这个信号可以被理解为一种动机信号,允许在需要的地方对最终的自组织进行更精细的调整。我们通过一个简单的机械臂设置来说明这种行为。本文的开放获取版本可在https://hal.inria.fr/hal-01513519上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信