U-Statistics for Importance-Weighted Variational Inference

Javier Burroni
{"title":"U-Statistics for Importance-Weighted Variational Inference","authors":"Javier Burroni","doi":"10.48550/arXiv.2302.13918","DOIUrl":null,"url":null,"abstract":"We propose the use of U-statistics to reduce variance for gradient estimation in importance-weighted variational inference. The key observation is that, given a base gradient estimator that requires $m>1$ samples and a total of $n>m$ samples to be used for estimation, lower variance is achieved by averaging the base estimator on overlapping batches of size $m$ than disjoint batches, as currently done. We use classical U-statistic theory to analyze the variance reduction, and propose novel approximations with theoretical guarantees to ensure computational efficiency. We find empirically that U-statistic variance reduction can lead to modest to significant improvements in inference performance on a range of models, with little computational cost.","PeriodicalId":432739,"journal":{"name":"Trans. Mach. Learn. Res.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trans. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.13918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose the use of U-statistics to reduce variance for gradient estimation in importance-weighted variational inference. The key observation is that, given a base gradient estimator that requires $m>1$ samples and a total of $n>m$ samples to be used for estimation, lower variance is achieved by averaging the base estimator on overlapping batches of size $m$ than disjoint batches, as currently done. We use classical U-statistic theory to analyze the variance reduction, and propose novel approximations with theoretical guarantees to ensure computational efficiency. We find empirically that U-statistic variance reduction can lead to modest to significant improvements in inference performance on a range of models, with little computational cost.
重要加权变分推理的u统计量
我们建议在重要性加权变分推理中使用u统计量来减少梯度估计的方差。关键的观察结果是,给定一个基本梯度估计器,它需要$m> $样本和总共$n> $m$样本用于估计,通过对大小为$m$的重叠批次的基本估计器进行平均,可以获得比不相交批次更低的方差,正如目前所做的那样。我们使用经典的u统计理论来分析方差缩减,并提出了新的近似,以保证计算效率。我们从经验上发现,减少u统计量方差可以导致在一系列模型上的推理性能得到适度到显著的改善,而计算成本很少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信