Inferring Depression and Affect from Application Dependent Meta Knowledge

AVEC '14 Pub Date : 2014-11-07 DOI:10.1145/2661806.2661813
Markus Kächele, Martin Schels, F. Schwenker
{"title":"Inferring Depression and Affect from Application Dependent Meta Knowledge","authors":"Markus Kächele, Martin Schels, F. Schwenker","doi":"10.1145/2661806.2661813","DOIUrl":null,"url":null,"abstract":"This paper outlines our contribution to the 2014 edition of the AVEC competition. It comprises classification results and considerations for both the continuous affect recognition sub-challenge and also the depression recognition sub-challenge. Rather than relying on statistical features that are normally extracted from the raw audio-visual data we propose an approach based on abstract meta information about individual subjects and also prototypical task and label dependent templates to infer the respective emotional states. The results of the approach that were submitted to both parts of the challenge significantly outperformed the baseline approaches. Further, we elaborate on several issues about the labeling of affective corpora and the choice of appropriate performance measures.","PeriodicalId":318508,"journal":{"name":"AVEC '14","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVEC '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661806.2661813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

This paper outlines our contribution to the 2014 edition of the AVEC competition. It comprises classification results and considerations for both the continuous affect recognition sub-challenge and also the depression recognition sub-challenge. Rather than relying on statistical features that are normally extracted from the raw audio-visual data we propose an approach based on abstract meta information about individual subjects and also prototypical task and label dependent templates to infer the respective emotional states. The results of the approach that were submitted to both parts of the challenge significantly outperformed the baseline approaches. Further, we elaborate on several issues about the labeling of affective corpora and the choice of appropriate performance measures.
从应用依赖元知识推断抑郁和影响
本文概述了我们对2014年AVEC竞赛的贡献。它包括对持续情感识别子挑战和抑郁识别子挑战的分类结果和考虑。与其依赖通常从原始视听数据中提取的统计特征,我们提出了一种基于关于个体受试者的抽象元信息以及原型任务和标签依赖模板的方法来推断各自的情绪状态。提交给挑战的两个部分的方法的结果明显优于基线方法。此外,我们详细阐述了关于情感语料库的标记和选择适当的性能指标的几个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信