Detection of cancer tumors in mammography images using support vector machine and mixed gravitational search algorithm

Fatemeh Shirazi, E. Rashedi
{"title":"Detection of cancer tumors in mammography images using support vector machine and mixed gravitational search algorithm","authors":"Fatemeh Shirazi, E. Rashedi","doi":"10.1109/CSIEC.2016.7482133","DOIUrl":null,"url":null,"abstract":"In this paper, support vector machine (SVM) and mixed gravitational search algorithm (MGSA) are utilized to detect the breast cancer tumors in mammography images. Sech template matching method is used to segment images and extract the regions of interest (ROIs). Gray-level co-occurrence matrix (GLCM) is used to extract features. The mixed GSA is used for optimization of the classifier parameters and selecting salient features. The main goal of using MGSA-SVM is to decrease the number of features and to improve the SVM classification accuracy. Finally, the selected features and the tuned SVM classifier are used for detecting tumors. The experimental results show that the proposed method is able to optimize both feature selection and the SVM parameters for the breast cancer tumor detection.","PeriodicalId":268101,"journal":{"name":"2016 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIEC.2016.7482133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, support vector machine (SVM) and mixed gravitational search algorithm (MGSA) are utilized to detect the breast cancer tumors in mammography images. Sech template matching method is used to segment images and extract the regions of interest (ROIs). Gray-level co-occurrence matrix (GLCM) is used to extract features. The mixed GSA is used for optimization of the classifier parameters and selecting salient features. The main goal of using MGSA-SVM is to decrease the number of features and to improve the SVM classification accuracy. Finally, the selected features and the tuned SVM classifier are used for detecting tumors. The experimental results show that the proposed method is able to optimize both feature selection and the SVM parameters for the breast cancer tumor detection.
基于支持向量机和混合引力搜索算法的乳房x线影像肿瘤检测
本文采用支持向量机(SVM)和混合引力搜索算法(MGSA)对乳房x线摄影图像中的乳腺癌肿瘤进行检测。采用Sech模板匹配方法对图像进行分割,提取感兴趣区域。采用灰度共生矩阵(GLCM)提取特征。混合GSA用于分类器参数的优化和显著特征的选择。使用MGSA-SVM的主要目的是减少特征的数量,提高SVM的分类精度。最后,将选择的特征和调整后的SVM分类器用于肿瘤检测。实验结果表明,该方法能够对乳腺癌肿瘤检测的特征选择和支持向量机参数进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信